Capitoli Giulia, Nobile Marco S, Ambags Emma L, L'Imperio Vincenzo, Provenzano Michele, Liò Pietro
School of Medicine and Surgery, University of Milano-Bicocca, 20854, Monza, Italy.
Biostatistics and Clinical Epidemiology, Fondazione IRCCS San Gerardo dei Tintori, 20854, Monza, Italy.
BMC Med Inform Decis Mak. 2025 Sep 15;25(Suppl 3):330. doi: 10.1186/s12911-025-03183-5.
The need for transparency and interpretability is a fundamental theme to be addressed by Artificial Intelligence (AI) research, especially in high-risk applications such as healthcare. In this work, we propose Fuzzy Sets in Probability Trees (FPT), a novel method that combines probabilistic trees and fuzzy logic. This approach is fully interpretable, providing clinicians with a tool generate and verify the entire clinical decision process.
FPT extends the existing framework of Probabilistic Decision Trees by incorporating the uncertainty in the data, allowing for a flexible description of vague variables. Thus, FPTs enable the incorporation of domain knowledge in the form of fuzzy membership functions within the framework of probabilistic trees. Furthermore, FPTs can represent circumstances or explanations that cannot be represented with other techniques (e.g., Bayesian networks), paving the way to a novel form of interpretable AI that allows clinicians to generate, control and verify the entire diagnosis procedure; one of the strengths of our methodology is the capability to decrease the frequency of misdiagnoses by providing an estimate of uncertainties and counterfactuals.
We applied FPT to two real medical scenarios: classifying malignant thyroid nodules, and predicting the risk of progression in chronic kidney disease patients. Our results show that FPTs can provide interpretable support to clinicians. We also show that FPT and its predictions can assist clinical practice in an intuitive manner, with the use of a user-friendly interface specifically designed for this purpose.
The integration of probabilistic trees and fuzzy reasoning preserves the nuances that are generally lost in (probabilistic) decision trees due to the adoption of crisp thresholds, leading to hybrid trees that provide an AI system better aligned with human reasoning processes and that can effectively support clinicians in the diagnosis decision process.
[Image: see text]
The online version contains supplementary material available at 10.1186/s12911-025-03183-5.
透明度和可解释性的需求是人工智能(AI)研究需要解决的一个基本主题,尤其是在医疗保健等高风险应用中。在这项工作中,我们提出了概率树中的模糊集(FPT),这是一种结合概率树和模糊逻辑的新方法。这种方法是完全可解释的,为临床医生提供了一种生成和验证整个临床决策过程的工具。
FPT通过纳入数据中的不确定性扩展了概率决策树的现有框架,允许对模糊变量进行灵活描述。因此,FPT能够在概率树框架内以模糊隶属函数的形式纳入领域知识。此外,FPT可以表示其他技术(如贝叶斯网络)无法表示的情况或解释,为一种新型的可解释AI铺平了道路,使临床医生能够生成、控制和验证整个诊断过程;我们方法的优势之一是能够通过提供不确定性和反事实的估计来降低误诊频率。
我们将FPT应用于两个实际医疗场景:对恶性甲状腺结节进行分类,以及预测慢性肾病患者的病情进展风险。我们的结果表明,FPT可以为临床医生提供可解释的支持。我们还表明,FPT及其预测可以以直观的方式辅助临床实践,使用专门为此目的设计的用户友好界面。
概率树和模糊推理的整合保留了由于采用清晰阈值而通常在(概率)决策树中丢失的细微差别,从而产生了混合树,使AI系统更符合人类推理过程,并能够在诊断决策过程中有效地支持临床医生。
[图像:见正文]
在线版本包含可在10.1186/s12911-025-03183-5获取的补充材料。