Bi Yunpeng, Yu Lishan, Deng Qidong, Kong Linghao, Guo Fuhu, Zhang Yuchen, Wang Ruixiang, Chen Peng R, Liu Jun, Fan Xinyuan
Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Peking University, Beijing, China.
Nat Chem. 2025 Sep 16. doi: 10.1038/s41557-025-01946-1.
Understanding cellular functions in health and disease requires dissecting spatiotemporal variations in the subcellular transcriptome. Existing methods for mitochondrial RNA profiling suffer from limitations, including low resolution, contamination and dependence on genetic manipulation. Here we present a bioorthogonal photocatalytic labelling and sequencing strategy (CAT-seq) that enables high-resolution, in situ profiling of mitochondrial RNA in living cells without genetic manipulation. We identified a quinone methide probe for efficient RNA labelling. Rigorous validation and optimization enabled CAT-seq to successfully profile mitochondrial RNA and track RNA dynamics in HeLa cells. We further applied CAT-seq to the challenging RAW 264.7 macrophages, revealing an underlying mitochondrial translational remodelling pathway. By leveraging the chemistry of quinone methide warheads, we established an orthogonal labelling system enabling synchronous RNA and protein multi-omics profiling within the same sample. Together, assisted by bioorthogonal photocatalytic chemistry, CAT-seq offers a general, non-genetic and well-compatible approach for subcellular-resolved RNA and multi-omics investigations, particularly in studies of intact primary living samples that are otherwise challenging to access.
了解健康和疾病状态下的细胞功能需要剖析亚细胞转录组的时空变化。现有的线粒体RNA分析方法存在局限性,包括分辨率低、污染以及依赖基因操作。在此,我们提出了一种生物正交光催化标记和测序策略(CAT-seq),该策略能够在不进行基因操作的情况下,对活细胞中的线粒体RNA进行高分辨率的原位分析。我们鉴定出一种用于高效RNA标记的醌甲基化物探针。经过严格的验证和优化,CAT-seq成功地对HeLa细胞中的线粒体RNA进行了分析,并追踪了RNA动态。我们进一步将CAT-seq应用于具有挑战性的RAW 264.7巨噬细胞,揭示了一条潜在的线粒体翻译重塑途径。通过利用醌甲基化物弹头的化学性质,我们建立了一个正交标记系统,能够在同一样本中实现RNA和蛋白质的同步多组学分析。总之,在生物正交光催化化学的辅助下,CAT-seq为亚细胞分辨率的RNA和多组学研究提供了一种通用、非基因且兼容性良好的方法,特别是在对完整的原代活样本进行研究时,否则这些样本很难获取。