Suppr超能文献

大肠杆菌鞭毛旋转所需的膜相关蛋白MotA的基因序列和预测的氨基酸序列。

Gene sequence and predicted amino acid sequence of the motA protein, a membrane-associated protein required for flagellar rotation in Escherichia coli.

作者信息

Dean G E, Macnab R M, Stader J, Matsumura P, Burks C

出版信息

J Bacteriol. 1984 Sep;159(3):991-9. doi: 10.1128/jb.159.3.991-999.1984.

Abstract

The motA and motB gene products of Escherichia coli are integral membrane proteins necessary for flagellar rotation. We determined the DNA sequence of the region containing the motA gene and its promoter. Within this sequence, there is an open reading frame of 885 nucleotides, which with high probability (98% confidence level) meets criteria for a coding sequence. The 295-residue amino acid translation product had a molecular weight of 31,974, in good agreement with the value determined experimentally by gel electrophoresis. The amino acid sequence, which was quite hydrophobic, was subjected to a theoretical analysis designed to predict membrane-spanning alpha-helical segments of integral membrane proteins; four such hydrophobic helices were predicted by this treatment. Additional amphipathic helices may also be present. A remarkable feature of the sequence is the existence of two segments of high uncompensated charge density, one positive and the other negative. Possible organization of the protein in the membrane is discussed. Asymmetry in the amino acid composition of translated DNA sequences was used to distinguish between two possible initiation codons. The use of this method as a criterion for authentication of coding regions is described briefly in an Appendix.

摘要

大肠杆菌的motA和motB基因产物是鞭毛旋转所必需的整合膜蛋白。我们测定了包含motA基因及其启动子区域的DNA序列。在该序列中,有一个885个核苷酸的开放阅读框,它极有可能(置信水平为98%)符合编码序列的标准。由295个氨基酸残基组成的翻译产物分子量为31,974,与通过凝胶电泳实验测定的值高度吻合。该氨基酸序列具有很强的疏水性,我们对其进行了理论分析,旨在预测整合膜蛋白的跨膜α螺旋片段;通过这种分析预测出了四个这样的疏水螺旋。可能还存在其他两亲性螺旋。该序列的一个显著特征是存在两段高净电荷密度区域,一段带正电,另一段带负电。文中讨论了该蛋白在膜中的可能组织形式。利用翻译后的DNA序列氨基酸组成的不对称性来区分两个可能的起始密码子。附录中简要描述了将此方法用作编码区域鉴定标准的情况。

相似文献

5
Function of proline residues of MotA in torque generation by the flagellar motor of Escherichia coli.
J Bacteriol. 1999 Jun;181(11):3542-51. doi: 10.1128/JB.181.11.3542-3551.1999.
6
Ion-coupling determinants of Na+-driven and H+-driven flagellar motors.
J Mol Biol. 2003 Mar 21;327(2):453-63. doi: 10.1016/s0022-2836(03)00096-2.
8
Motility protein interactions in the bacterial flagellar motor.
Proc Natl Acad Sci U S A. 1995 Mar 14;92(6):1970-4. doi: 10.1073/pnas.92.6.1970.

引用本文的文献

1
Viscosity-dependent determinants of impacting the velocity of flagellar motility.
mBio. 2024 Jan 16;15(1):e0254423. doi: 10.1128/mbio.02544-23. Epub 2023 Dec 12.
2
Site-Directed Cross-Linking Between Bacterial Flagellar Motor Proteins In Vivo.
Methods Mol Biol. 2023;2646:71-82. doi: 10.1007/978-1-0716-3060-0_7.
3
The Bacterial Flagellar Motor: Insights Into Torque Generation, Rotational Switching, and Mechanosensing.
Front Microbiol. 2022 May 30;13:911114. doi: 10.3389/fmicb.2022.911114. eCollection 2022.
4
Dynamic Hybrid Flagellar Motors-Fuel Switch and More.
Front Microbiol. 2022 Apr 12;13:863804. doi: 10.3389/fmicb.2022.863804. eCollection 2022.
5
6
Ancestral Sequence Reconstructions of MotB Are Proton-Motile and Require MotA for Motility.
Front Microbiol. 2020 Dec 23;11:625837. doi: 10.3389/fmicb.2020.625837. eCollection 2020.
7
Structural insights into the mechanism of c-di-GMP-bound YcgR regulating flagellar motility in .
J Biol Chem. 2020 Jan 17;295(3):808-821. doi: 10.1074/jbc.RA119.009739. Epub 2019 Dec 13.
8
A Chaperone for the Stator Units of a Bacterial Flagellum.
mBio. 2019 Aug 6;10(4):e01732-19. doi: 10.1128/mBio.01732-19.
9
Functional Regulators of Bacterial Flagella.
Annu Rev Microbiol. 2019 Sep 8;73:225-246. doi: 10.1146/annurev-micro-020518-115725. Epub 2019 May 28.
10
High-Salt Conditions Alter Transcription of Helicobacter pylori Genes Encoding Outer Membrane Proteins.
Infect Immun. 2018 Feb 20;86(3). doi: 10.1128/IAI.00626-17. Print 2018 Mar.

本文引用的文献

2
3
Recognition of protein coding regions in DNA sequences.
Nucleic Acids Res. 1982 Sep 11;10(17):5303-18. doi: 10.1093/nar/10.17.5303.
4
A simple method for displaying the hydropathic character of a protein.
J Mol Biol. 1982 May 5;157(1):105-32. doi: 10.1016/0022-2836(82)90515-0.
6
Use of the 'Perceptron' algorithm to distinguish translational initiation sites in E. coli.
Nucleic Acids Res. 1982 May 11;10(9):2997-3011. doi: 10.1093/nar/10.9.2997.
7
Regulatory regions of two transport operons under nitrogen control: nucleotide sequences.
Proc Natl Acad Sci U S A. 1982 Feb;79(4):1083-7. doi: 10.1073/pnas.79.4.1083.
8
Fusions of flagellar operons to lactose genes on a mu lac bacteriophage.
J Bacteriol. 1982 Apr;150(1):16-26. doi: 10.1128/jb.150.1.16-26.1982.
9
Sensory transducers of E. coli are encoded by homologous genes.
Cell. 1981 Nov;26(3 Pt 1):333-43. doi: 10.1016/0092-8674(81)90202-6.
10
Incomplete flagellar structures in Escherichia coli mutants.
J Bacteriol. 1981 Feb;145(2):1036-41. doi: 10.1128/jb.145.2.1036-1041.1981.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验