dePamphilis C W, Young N D, Wolfe A D
Department of Biology, Vanderbilt University, Nashville, TN 37235, USA.
Proc Natl Acad Sci U S A. 1997 Jul 8;94(14):7367-72. doi: 10.1073/pnas.94.14.7367.
The plastid genomes of some nonphotosynthetic parasitic plants have experienced an extreme reduction in gene content and an increase in evolutionary rate of remaining genes. Nothing is known of the dynamics of these events or whether either is a direct outcome of the loss of photosynthesis. The parasitic Scrophulariaceae and Orobanchaceae, representing a continuum of heterotrophic ability ranging from photosynthetic hemiparasites to nonphotosynthetic holoparasites, are used to investigate these issues. We present a phylogenetic hypothesis for parasitic Scrophulariaceae and Orobanchaceae based on sequences of the plastid gene rps2, encoding the S2 subunit of the plastid ribosome. Parasitic Scrophulariaceae and Orobanchaceae form a monophyletic group in which parasitism can be inferred to have evolved once. Holoparasitism has evolved independently at least five times, with certain holoparasitic lineages representing single species, genera, and collections of nonphotosynthetic genera. Evolutionary loss of the photosynthetic gene rbcL is limited to a subset of holoparasitic lineages, with several holoparasites retaining a full length rbcL sequence. In contrast, the translational gene rps2 is retained in all plants investigated but has experienced rate accelerations in several hemi- as well as holoparasitic lineages, suggesting that there may be substantial molecular evolutionary changes to the plastid genome of parasites before the loss of photosynthesis. Independent patterns of synonymous and nonsynonymous rate acceleration in rps2 point to distinct mechanisms underlying rate variation in different lineages. Parasitic Scrophulariaceae (including the traditional Orobanchaceae) provide a rich platform for the investigation of molecular evolutionary process, gene function, and the evolution of parasitism.
一些非光合寄生植物的质体基因组经历了基因含量的极端减少以及剩余基因进化速率的增加。对于这些事件的动态变化以及它们是否是光合作用丧失的直接结果,我们一无所知。寄生的玄参科和列当科植物代表了从光合半寄生植物到非光合全寄生植物的一系列异养能力,被用于研究这些问题。我们基于编码质体核糖体S2亚基的质体基因rps2的序列,提出了寄生玄参科和列当科的系统发育假说。寄生玄参科和列当科形成一个单系类群,在这个类群中可以推断寄生现象只进化了一次。全寄生现象至少独立进化了五次,某些全寄生谱系代表单一物种、属以及非光合属的集合。光合基因rbcL的进化丧失仅限于全寄生谱系的一个子集,有几个全寄生植物保留了全长的rbcL序列。相比之下,翻译基因rps2在所有研究的植物中都保留了下来,但在几个半寄生和全寄生谱系中经历了速率加速,这表明在光合作用丧失之前,寄生植物的质体基因组可能发生了重大的分子进化变化。rps2中同义替换率和非同义替换率的独立加速模式表明不同谱系中速率变化的潜在机制不同。寄生玄参科(包括传统的列当科)为研究分子进化过程、基因功能和寄生现象的进化提供了一个丰富的平台。