Lee Ho-Jin, Song Jong-Won, Choi Young-Sang, Park Hyun-Mee, Lee Kang-Bong
Advanced Analysis Center, Korea Institute of Science and Technology, P.O. Box 131, Cheongryangri, Seoul 130-650, Korea.
J Am Chem Soc. 2002 Oct 9;124(40):11881-93. doi: 10.1021/ja026496x.
The conformational properties of azapeptide derivatives, Ac-azaGly-NHMe (1), Ac-azaAla-NHMe (2), Ac-NMe-azaGly-NHMe (3), Ac-NMe-azaAla-NHMe (4), Ac-azaGly-NMe(2) (5), Ac-azaAla-NMe(2) (6), Ac-NMe-azaGly-NMe(2) (7), and Ac-NMe-azaAla-NMe(2) (8), were systematically examined by using ab initio MO and DFT methods. Structural perturbations in azapeptides resulting from cyclic substitution of a methyl group at three N-positions of an azaamino acid were studied on the basis of the structure of the simplest model azapeptide, 1. Potential energy surfaces were generated at the HF/6-31G level for 1-4 and at the HF/6-31G//HF/3-21G level for 5-8 by rotating two key dihedral angles (phi, psi) in increments of 30 degrees. The backbone (phi, psi) angles of the minima for 1-4 are observed at the i + 2 position to form the betaI(I')-, betaII(II')-, betaVI-turns or the polyproline II structure according to the orientation of the acetyl group and the positions of the N-methyl groups. Compounds 5-8 coupled to a secondary amine were found to preferentially adopt polyproline II, betaI(III)-turn, or alpha-helical structure or even extended conformations depending on the orientation of the acetyl group and the positions of the N-methyl groups. Furthermore, N-methyl groups, depending on their positions, were found to affect the orientation of the amide group in the lowest energy conformations, the pyramidality of the N2 atom, and the bond length in azapeptide derivatives. These unique theoretical conformations of N-methyl azapeptide derivatives could be utilized in the definite design of secondary structure for peptides and proteins, and in the development of new drugs and molecular machines.
通过从头算分子轨道(ab initio MO)和密度泛函理论(DFT)方法,系统研究了氮杂肽衍生物Ac-azaGly-NHMe(1)、Ac-azaAla-NHMe(2)、Ac-NMe-azaGly-NHMe(3)、Ac-NMe-azaAla-NHMe(4)、Ac-azaGly-NMe₂(5)、Ac-azaAla-NMe₂(6)、Ac-NMe-azaGly-NMe₂(7)和Ac-NMe-azaAla-NMe₂(8)的构象性质。基于最简单的模型氮杂肽1的结构,研究了氮杂氨基酸三个N位上甲基的环状取代导致的氮杂肽结构扰动。通过以30度增量旋转两个关键二面角(φ,ψ),在HF/6-31G水平上生成了1-4的势能面,在HF/6-31G//HF/3-21G水平上生成了5-8的势能面。根据乙酰基的取向和N-甲基的位置,在i + 2位置观察到1-4的最小值的主链(φ,ψ)角形成βI(I')-、βII(II')-、βVI-转角或多聚脯氨酸II结构。发现与仲胺偶联的化合物5-8根据乙酰基的取向和N-甲基的位置优先采用多聚脯氨酸II、βI(III)-转角或α-螺旋结构,甚至是伸展构象。此外,发现N-甲基根据其位置会影响最低能量构象中酰胺基团的取向、N₂原子的锥度以及氮杂肽衍生物中的键长。N-甲基氮杂肽衍生物的这些独特理论构象可用于肽和蛋白质二级结构的明确设计,以及新药和分子机器的开发。