Suppr超能文献

翻译选择与酵母蛋白质组进化

Translational selection and yeast proteome evolution.

作者信息

Akashi Hiroshi

机构信息

Institute of Molecular Evolutionary Genetics and Department of Biology, 208 Mueller Laboratory, Pennsylvania State University, University Park, PA 16802, USA.

出版信息

Genetics. 2003 Aug;164(4):1291-303. doi: 10.1093/genetics/164.4.1291.

Abstract

The primary structures of peptides may be adapted for efficient synthesis as well as proper function. Here, the Saccharomyces cerevisiae genome sequence, DNA microarray expression data, tRNA gene numbers, and functional categorizations of proteins are employed to determine whether the amino acid composition of peptides reflects natural selection to optimize the speed and accuracy of translation. Strong relationships between synonymous codon usage bias and estimates of transcript abundance suggest that DNA array data serve as adequate predictors of translation rates. Amino acid usage also shows striking relationships with expression levels. Stronger correlations between tRNA concentrations and amino acid abundances among highly expressed proteins than among less abundant proteins support adaptation of both tRNA abundances and amino acid usage to enhance the speed and accuracy of protein synthesis. Natural selection for efficient synthesis appears to also favor shorter proteins as a function of their expression levels. Comparisons restricted to proteins within functional classes are employed to control for differences in amino acid composition and protein size that reflect differences in the functional requirements of proteins expressed at different levels.

摘要

肽的一级结构可能会进行调整,以实现高效合成以及发挥正常功能。在此,利用酿酒酵母基因组序列、DNA微阵列表达数据、tRNA基因数量以及蛋白质的功能分类,来确定肽的氨基酸组成是否反映了自然选择,以优化翻译的速度和准确性。同义密码子使用偏好与转录本丰度估计值之间的强相关性表明,DNA阵列数据可作为翻译速率的充分预测指标。氨基酸使用情况也与表达水平呈现出显著关系。高表达蛋白质中tRNA浓度与氨基酸丰度之间的相关性,比低丰度蛋白质中的更强,这支持了tRNA丰度和氨基酸使用情况的适应性调整,以提高蛋白质合成的速度和准确性。高效合成的自然选择似乎也倾向于根据蛋白质的表达水平选择更短的蛋白质。对功能类别内蛋白质的比较用于控制氨基酸组成和蛋白质大小的差异,这些差异反映了不同水平表达的蛋白质功能需求的差异。

相似文献

1
Translational selection and yeast proteome evolution.
Genetics. 2003 Aug;164(4):1291-303. doi: 10.1093/genetics/164.4.1291.
2
Reinvestigating the codon and amino acid usage of S. cerevisiae genome: a new insight from protein secondary structure analysis.
Biochem Biophys Res Commun. 2007 Mar 16;354(3):693-9. doi: 10.1016/j.bbrc.2007.01.038. Epub 2007 Jan 17.
4
Coevolution of codon usage and transfer RNA abundance.
Nature. 1987;325(6106):728-30. doi: 10.1038/325728a0.
5
Codon usage of highly expressed genes affects proteome-wide translation efficiency.
Proc Natl Acad Sci U S A. 2018 May 22;115(21):E4940-E4949. doi: 10.1073/pnas.1719375115. Epub 2018 May 7.
6
Cells alter their tRNA abundance to selectively regulate protein synthesis during stress conditions.
Sci Signal. 2018 Sep 4;11(546):eaat6409. doi: 10.1126/scisignal.aat6409.
7
8
Transfer RNA gene redundancy and translational selection in Saccharomyces cerevisiae.
J Mol Biol. 1997 May 2;268(2):322-30. doi: 10.1006/jmbi.1997.0942.
10
Bridging the gap between transcriptome and proteome measurements identifies post-translationally regulated genes.
Bioinformatics. 2013 Dec 1;29(23):3060-6. doi: 10.1093/bioinformatics/btt537. Epub 2013 Sep 16.

引用本文的文献

1
Dinucleotide preferences underlie apparent codon preference reversals in the lineage.
Proc Natl Acad Sci U S A. 2025 May 27;122(21):e2419696122. doi: 10.1073/pnas.2419696122. Epub 2025 May 22.
2
Lost in translation: conserved amino acid usage despite extreme codon bias in foraminifera.
mBio. 2025 Apr 9;16(4):e0391624. doi: 10.1128/mbio.03916-24. Epub 2025 Mar 5.
6
A Dynamic rRNA Ribomethylome Drives Stemness in Acute Myeloid Leukemia.
Cancer Discov. 2023 Feb 6;13(2):332-347. doi: 10.1158/2159-8290.CD-22-0210.
8
Variables Influencing Differences in Sequence Conservation in the Fission Yeast Schizosaccharomyces pombe.
J Mol Evol. 2021 Dec;89(9-10):601-610. doi: 10.1007/s00239-021-10028-y. Epub 2021 Aug 26.
10
Abundance Imparts Evolutionary Constraints of Similar Magnitude on the Buried, Surface, and Disordered Regions of Proteins.
Front Mol Biosci. 2021 Apr 30;8:626729. doi: 10.3389/fmolb.2021.626729. eCollection 2021.

本文引用的文献

1
Evolution of synonymous codon usage in metazoans.
Curr Opin Genet Dev. 2002 Dec;12(6):640-9. doi: 10.1016/s0959-437x(02)00353-2.
2
Linkage limits the power of natural selection in Drosophila.
Proc Natl Acad Sci U S A. 2002 Oct 15;99(21):13616-20. doi: 10.1073/pnas.212277199. Epub 2002 Oct 7.
3
A strong effect of AT mutational bias on amino acid usage in Buchnera is mitigated at high-expression genes.
Mol Biol Evol. 2002 Sep;19(9):1575-84. doi: 10.1093/oxfordjournals.molbev.a004219.
4
Rates and patterns of molecular evolution in inbred and outbred Arabidopsis.
Mol Biol Evol. 2002 Sep;19(9):1407-20. doi: 10.1093/oxfordjournals.molbev.a004204.
5
Selection for short introns in highly expressed genes.
Nat Genet. 2002 Aug;31(4):415-8. doi: 10.1038/ng940. Epub 2002 Jul 22.
6
Integrating genomics, bioinformatics, and classical genetics to study the effects of recombination on genome evolution.
Mol Biol Evol. 2002 Jul;19(7):1181-97. doi: 10.1093/oxfordjournals.molbev.a004176.
7
Trends in codon and amino acid usage in Thermotoga maritima.
J Mol Evol. 2002 May;54(5):563-8. doi: 10.1007/s00239-001-0040-y.
8
Metabolic efficiency and amino acid composition in the proteomes of Escherichia coli and Bacillus subtilis.
Proc Natl Acad Sci U S A. 2002 Mar 19;99(6):3695-700. doi: 10.1073/pnas.062526999.
9
Does the recombination rate affect the efficiency of purifying selection? The yeast genome provides a partial answer.
Mol Biol Evol. 2001 Dec;18(12):2323-6. doi: 10.1093/oxfordjournals.molbev.a003779.
10
Gene expression and molecular evolution.
Curr Opin Genet Dev. 2001 Dec;11(6):660-6. doi: 10.1016/s0959-437x(00)00250-1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验