Suppr超能文献

一种可能解决蛋白质进化中缺失环节的非同源氨酰-tRNA合成酶。

A noncognate aminoacyl-tRNA synthetase that may resolve a missing link in protein evolution.

作者信息

Skouloubris Stephane, Ribas de Pouplana Lluis, De Reuse Hilde, Hendrickson Tamara L

机构信息

Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA.

出版信息

Proc Natl Acad Sci U S A. 2003 Sep 30;100(20):11297-302. doi: 10.1073/pnas.1932482100. Epub 2003 Sep 17.

Abstract

Efforts to delineate the advent of many enzymes essential to protein translation are often limited by the fact that the modern genetic code evolved before divergence of the tree of life. Glutaminyl-tRNA synthetase (GlnRS) is one noteworthy exception to the universality of the translation apparatus. In eukaryotes and some bacteria, this enzyme is essential for the biosynthesis of Gln-tRNAGln, an obligate intermediate in translation. GlnRS is absent, however, in archaea, and most bacteria, organelles, and chloroplasts. Phylogenetic analyses predict that GlnRS arose from glutamyl-tRNA synthetase (GluRS), via gene duplication with subsequent evolution of specificity. A pertinent question to ask is whether, in the advent of GlnRS, a transient GluRS-like intermediate could have been retained in an extant organism. Here, we report the discovery of an essential GluRS-like enzyme (GluRS2), which coexists with another GluRS (GluRS1) in Helicobacter pylori. We show that GluRS2's primary role is to generate Glu-tRNAGln, not Glu-tRNAGlu. Thus, GluRS2 appears to be a transient GluRS-like ancestor of GlnRS and can be defined as a GluGlnRS.

摘要

描绘蛋白质翻译过程中许多必需酶出现的努力常常受到这样一个事实的限制,即现代遗传密码在生命之树分化之前就已经进化了。谷氨酰胺-tRNA合成酶(GlnRS)是翻译装置普遍性的一个显著例外。在真核生物和一些细菌中,这种酶对于Gln-tRNAGln的生物合成至关重要,而Gln-tRNAGln是翻译过程中必不可少的中间体。然而,古细菌、大多数细菌、细胞器和叶绿体中不存在GlnRS。系统发育分析预测,GlnRS起源于谷氨酰胺-tRNA合成酶(GluRS),通过基因复制以及随后特异性的进化而来。一个相关的问题是,在GlnRS出现时,一种类似GluRS的瞬时中间体是否可能在现存生物中保留下来。在这里,我们报告了一种必需的类似GluRS的酶(GluRS2)的发现,它与另一种GluRS(GluRS1)在幽门螺杆菌中共存。我们表明,GluRS2的主要作用是生成Glu-tRNAGln,而不是Glu-tRNAGlu。因此,GluRS2似乎是GlnRS的一种瞬时类似GluRS的祖先,可以被定义为GluGlnRS。

相似文献

1
A noncognate aminoacyl-tRNA synthetase that may resolve a missing link in protein evolution.
Proc Natl Acad Sci U S A. 2003 Sep 30;100(20):11297-302. doi: 10.1073/pnas.1932482100. Epub 2003 Sep 17.
2
Coevolution of an aminoacyl-tRNA synthetase with its tRNA substrates.
Proc Natl Acad Sci U S A. 2003 Nov 25;100(24):13863-8. doi: 10.1073/pnas.1936123100. Epub 2003 Nov 13.
3
Evolutionary insights about bacterial GlxRS from whole genome analyses: is GluRS2 a chimera?
BMC Evol Biol. 2014 Feb 12;14:26. doi: 10.1186/1471-2148-14-26.
4
A chimaeric glutamyl:glutaminyl-tRNA synthetase: implications for evolution.
Biochem J. 2009 Jan 15;417(2):449-55. doi: 10.1042/BJ20080747.
7
Rational design and directed evolution of a bacterial-type glutaminyl-tRNA synthetase precursor.
Nucleic Acids Res. 2012 Sep;40(16):7967-74. doi: 10.1093/nar/gks507. Epub 2012 May 31.
8
Rational design of an evolutionary precursor of glutaminyl-tRNA synthetase.
Proc Natl Acad Sci U S A. 2011 Dec 20;108(51):20485-90. doi: 10.1073/pnas.1117294108. Epub 2011 Dec 7.
9
Glutamyl-tRNA sythetase.
Biol Chem. 1997 Nov;378(11):1313-29.
10
Recognition of tRNAGln by Helicobacter pylori GluRS2--a tRNAGln-specific glutamyl-tRNA synthetase.
Nucleic Acids Res. 2009 Nov;37(20):6942-9. doi: 10.1093/nar/gkp754. Epub 2009 Sep 15.

引用本文的文献

1
Architecture of glutamyl-tRNA synthetase defines a subfamily of dimeric class Ib aminoacyl-tRNA synthetases.
Proc Natl Acad Sci U S A. 2025 May 13;122(19):e2504757122. doi: 10.1073/pnas.2504757122. Epub 2025 May 9.
2
AARS Online: A collaborative database on the structure, function, and evolution of the aminoacyl-tRNA synthetases.
IUBMB Life. 2024 Dec;76(12):1091-1105. doi: 10.1002/iub.2911. Epub 2024 Sep 9.
3
Genetically stable kill-switch using "demon and angel" expression construct of essential genes.
Front Bioeng Biotechnol. 2024 Feb 28;12:1365870. doi: 10.3389/fbioe.2024.1365870. eCollection 2024.
4
Enzymic recognition of amino acids drove the evolution of primordial genetic codes.
Nucleic Acids Res. 2024 Jan 25;52(2):558-571. doi: 10.1093/nar/gkad1160.
5
Aminoacyl-tRNA synthetases.
RNA. 2020 Aug;26(8):910-936. doi: 10.1261/rna.071720.119. Epub 2020 Apr 17.
6
Bacterial Aspartyl-tRNA Synthetase Has Glutamyl-tRNA Synthetase Activity.
Genes (Basel). 2019 Apr 1;10(4):262. doi: 10.3390/genes10040262.
7
Old enzymes new herbicides.
J Biol Chem. 2018 May 18;293(20):7892-7893. doi: 10.1074/jbc.H118.002878.
8
An unexpected vestigial protein complex reveals the evolutionary origins of an -triazine catabolic enzyme.
J Biol Chem. 2018 May 18;293(20):7880-7891. doi: 10.1074/jbc.RA118.001996. Epub 2018 Mar 9.
9
Crystal structure of the N-terminal anticodon-binding domain of the nondiscriminating aspartyl-tRNA synthetase from Helicobacter pylori.
Acta Crystallogr F Struct Biol Commun. 2017 Feb 1;73(Pt 2):62-69. doi: 10.1107/S2053230X16020586. Epub 2017 Jan 19.
10
Aminoacyl-tRNA Synthetases in the Bacterial World.
EcoSal Plus. 2016 May;7(1). doi: 10.1128/ecosalplus.ESP-0002-2016.

本文引用的文献

1
MnmA and IscS are required for in vitro 2-thiouridine biosynthesis in Escherichia coli.
Biochemistry. 2003 Feb 4;42(4):1109-17. doi: 10.1021/bi026536+.
2
Splitting pairs: the diverging fates of duplicated genes.
Nat Rev Genet. 2002 Nov;3(11):827-37. doi: 10.1038/nrg928.
4
5
Domain-specific recruitment of amide amino acids for protein synthesis.
Nature. 2000 Sep 7;407(6800):106-10. doi: 10.1038/35024120.
8
Aminoacyl-tRNA synthetases, the genetic code, and the evolutionary process.
Microbiol Mol Biol Rev. 2000 Mar;64(1):202-36. doi: 10.1128/MMBR.64.1.202-236.2000.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验