Suppr超能文献

大肠杆菌脯氨酸利用A黄素蛋白DNA结合结构域的晶体结构及赖氨酸9在DNA识别中的作用分析

Crystal structures of the DNA-binding domain of Escherichia coli proline utilization A flavoprotein and analysis of the role of Lys9 in DNA recognition.

作者信息

Larson John D, Jenkins Jermaine L, Schuermann Jonathan P, Zhou Yuzhen, Becker Donald F, Tanner John J

机构信息

Department of Chemistry, University of Missouri--Columbia, Columbia, Missouri 65211, USA.

出版信息

Protein Sci. 2006 Nov;15(11):2630-41. doi: 10.1110/ps.062425706. Epub 2006 Sep 25.

Abstract

PutA (proline utilization A) from Escherichia coli is a 1320-amino-acid residue protein that is both a bifunctional proline catabolic enzyme and an autogenous transcriptional repressor. Here, we report the first crystal structure of a PutA DNA-binding domain along with functional analysis of a mutant PutA defective in DNA binding. Crystals were grown using a polypeptide corresponding to residues 1-52 of E. coli PutA (PutA52). The 2.1 Angstrom resolution structure of PutA52 mutant Lys9Met was determined using Se-Met MAD phasing, and the structure of native PutA52 was solved at 1.9 Angstrom resolution using molecular replacement. Residues 3-46 form a ribbon-helix-helix (RHH) substructure, thus establishing PutA as the largest protein to contain an RHH domain. The PutA RHH domain forms the intertwined dimer with tightly packed hydrophobic core that is characteristic of the RHH family. The structures were used to examine the three-dimensional context of residues conserved in PutA RHH domains. Homology modeling suggests that Lys9 and Thr5 contact DNA bases through the major groove, while Arg15, Thr28, and His30 may interact with the phosphate backbone. Lys9 is shown to be essential for specific recognition of put control DNA using gel shift analysis of the Lys9Met mutant of full-length PutA. Lys9 is disordered in the PutA52 structure, which implies an induced-fit binding mechanism in which the side chain of Lys9 becomes ordered through interaction with DNA. These results provide new insights into the structural basis of DNA recognition by PutA and reveal three-dimensional structural details of the PutA dimer interface.

摘要

来自大肠杆菌的PutA(脯氨酸利用蛋白A)是一种由1320个氨基酸残基组成的蛋白质,它既是一种双功能脯氨酸分解代谢酶,也是一种自体转录阻遏物。在此,我们报告了PutA DNA结合结构域的首个晶体结构以及对DNA结合有缺陷的PutA突变体的功能分析。使用对应于大肠杆菌PutA(PutA52)第1 - 52位残基的多肽培养晶体。利用硒代甲硫氨酸多波长反常散射(Se-Met MAD)相位法确定了PutA52突变体Lys9Met的2.1埃分辨率结构,并使用分子置换法在1.9埃分辨率下解析了天然PutA52的结构。第3 - 46位残基形成了一个带状 - 螺旋 - 螺旋(RHH)亚结构,从而确定PutA是包含RHH结构域的最大蛋白质。PutA RHH结构域形成了紧密堆积疏水核心的交织二聚体,这是RHH家族的特征。这些结构用于研究PutA RHH结构域中保守残基的三维环境。同源建模表明,Lys9和Thr5通过大沟与DNA碱基接触,而Arg15、Thr28和His30可能与磷酸骨架相互作用。通过对全长PutA的Lys9Met突变体进行凝胶迁移分析表明,Lys9对于特异性识别put调控DNA至关重要。Lys9在PutA52结构中无序,这意味着一种诱导契合结合机制,即Lys9的侧链通过与DNA相互作用而变得有序。这些结果为PutA识别DNA的结构基础提供了新的见解,并揭示了PutA二聚体界面的三维结构细节。

相似文献

2
Structural basis of the transcriptional regulation of the proline utilization regulon by multifunctional PutA.
J Mol Biol. 2008 Aug 1;381(1):174-88. doi: 10.1016/j.jmb.2008.05.084. Epub 2008 Jun 7.
3
Identification and characterization of the DNA-binding domain of the multifunctional PutA flavoenzyme.
J Biol Chem. 2004 Jul 23;279(30):31171-6. doi: 10.1074/jbc.M403701200. Epub 2004 May 20.
4
Structure of the proline dehydrogenase domain of the multifunctional PutA flavoprotein.
Nat Struct Biol. 2003 Feb;10(2):109-14. doi: 10.1038/nsb885.
7
Solution structure of the Pseudomonas putida protein PpPutA45 and its DNA complex.
Proteins. 2009 Apr;75(1):12-27. doi: 10.1002/prot.22217.
9
Crystallization and preliminary crystallographic analysis of the proline dehydrogenase domain of the multifunctional PutA flavoprotein from Escherichia coli.
Acta Crystallogr D Biol Crystallogr. 2001 Dec;57(Pt 12):1925-7. doi: 10.1107/s0907444901017140. Epub 2001 Nov 21.

引用本文的文献

1
Transcriptional reprogramming of Novacetimonas hansenii SI1 during growth on glycerol.
Appl Microbiol Biotechnol. 2025 Sep 2;109(1):194. doi: 10.1007/s00253-025-13583-2.
2
Bacterial Evolution in High-Osmolarity Environments.
mBio. 2020 Aug 4;11(4):e01191-20. doi: 10.1128/mBio.01191-20.
4
Role of Proline in Pathogen and Host Interactions.
Antioxid Redox Signal. 2019 Feb 1;30(4):683-709. doi: 10.1089/ars.2017.7335. Epub 2018 Feb 2.
5
Discovery of the Membrane Binding Domain in Trifunctional Proline Utilization A.
Biochemistry. 2017 Nov 28;56(47):6292-6303. doi: 10.1021/acs.biochem.7b01008. Epub 2017 Nov 15.
6
Structural Biology of Proline Catabolic Enzymes.
Antioxid Redox Signal. 2019 Feb 1;30(4):650-673. doi: 10.1089/ars.2017.7374. Epub 2017 Nov 13.
7
Structure, function, and mechanism of proline utilization A (PutA).
Arch Biochem Biophys. 2017 Oct 15;632:142-157. doi: 10.1016/j.abb.2017.07.005. Epub 2017 Jul 14.

本文引用的文献

3
Likelihood-enhanced fast translation functions.
Acta Crystallogr D Biol Crystallogr. 2005 Apr;61(Pt 4):458-64. doi: 10.1107/S0907444905001617. Epub 2005 Mar 24.
5
Developments in the CCP4 molecular-graphics project.
Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2288-94. doi: 10.1107/S0907444904023716. Epub 2004 Nov 26.
6
Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions.
Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2256-68. doi: 10.1107/S0907444904026460. Epub 2004 Nov 26.
7
Coot: model-building tools for molecular graphics.
Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2126-32. doi: 10.1107/S0907444904019158. Epub 2004 Nov 26.
8
Regulation of PutA-membrane associations by flavin adenine dinucleotide reduction.
Biochemistry. 2004 Oct 19;43(41):13165-74. doi: 10.1021/bi048596g.
10
Identification and characterization of the DNA-binding domain of the multifunctional PutA flavoenzyme.
J Biol Chem. 2004 Jul 23;279(30):31171-6. doi: 10.1074/jbc.M403701200. Epub 2004 May 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验