Arentson Benjamin W, Hayes Erin L, Zhu Weidong, Singh Harkewal, Tanner John J, Becker Donald F
Department of Biochemistry, Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68588, U.S.A.
Department of Chemistry, University of Missouri-Columbia, Columbia, MO 65211, U.S.A.
Biosci Rep. 2016 Nov 22;36(6). doi: 10.1042/BSR20160435. Print 2016 Dec.
Proline utilization A (PutA) is a bifunctional flavoenzyme with proline dehydrogenase (PRODH) and Δ-pyrroline-5-carboxylate (P5C) dehydrogenase (P5CDH) domains that catalyses the two-step oxidation of proline to glutamate. Trifunctional PutAs also have an N-terminal ribbon-helix-helix (RHH) DNA-binding domain and moonlight as autogenous transcriptional repressors of the put regulon. A unique property of trifunctional PutA is the ability to switch functions from DNA-bound repressor to membrane-associated enzyme in response to cellular nutritional needs and proline availability. In the present study, we attempt to construct a trifunctional PutA by fusing the RHH domain of Escherichia coli PutA (EcRHH) to the bifunctional Rhodobacter capsulatus PutA (RcPutA) in order to explore the modular design of functional switching in trifunctional PutAs. The EcRHH-RcPutA chimaera retains the catalytic properties of RcPutA while acquiring the oligomeric state, quaternary structure and DNA-binding properties of EcPutA. Furthermore, the EcRHH-RcPutA chimaera exhibits proline-induced lipid association, which is a fundamental characteristic of functional switching. Unexpectedly, RcPutA lipid binding is also activated by proline, which shows for the first time that bifunctional PutAs exhibit a limited form of functional switching. Altogether, these results suggest that the C-terminal domain (CTD), which is conserved by trifunctional PutAs and certain bifunctional PutAs, is essential for functional switching in trifunctional PutAs.
脯氨酸利用蛋白A(PutA)是一种双功能黄素酶,具有脯氨酸脱氢酶(PRODH)和Δ-吡咯啉-5-羧酸(P5C)脱氢酶(P5CDH)结构域,催化脯氨酸两步氧化为谷氨酸。三功能PutA还具有一个N端带状螺旋-螺旋(RHH)DNA结合结构域,兼作put操纵子的自体转录阻遏物。三功能PutA的一个独特特性是能够根据细胞营养需求和脯氨酸可用性,将功能从与DNA结合的阻遏物切换为与膜相关的酶。在本研究中,我们试图通过将大肠杆菌PutA(EcRHH)的RHH结构域与双功能荚膜红细菌PutA(RcPutA)融合来构建一种三功能PutA,以探索三功能PutA中功能切换的模块化设计。EcRHH-RcPutA嵌合体保留了RcPutA的催化特性,同时获得了EcPutA的寡聚状态、四级结构和DNA结合特性。此外,EcRHH-RcPutA嵌合体表现出脯氨酸诱导的脂质结合,这是功能切换的一个基本特征。出乎意料的是,脯氨酸也激活了RcPutA的脂质结合,这首次表明双功能PutA表现出有限形式的功能切换。总之,这些结果表明,三功能PutA和某些双功能PutA保守的C端结构域(CTD)对于三功能PutA的功能切换至关重要。