Suppr超能文献

A型PutAs的生物物理研究揭示了一种保守的核心寡聚结构。

Biophysical investigation of type A PutAs reveals a conserved core oligomeric structure.

作者信息

Korasick David A, Singh Harkewal, Pemberton Travis A, Luo Min, Dhatwalia Richa, Tanner John J

机构信息

Department of Biochemistry, University of Missouri, Columbia, MO, USA.

Department of Chemistry, University of Missouri, Columbia, MO, USA.

出版信息

FEBS J. 2017 Sep;284(18):3029-3049. doi: 10.1111/febs.14165. Epub 2017 Aug 1.

Abstract

UNLABELLED

Many enzymes form homooligomers, yet the functional significance of self-association is seldom obvious. Herein, we examine the connection between oligomerization and catalytic function for proline utilization A (PutA) enzymes. PutAs are bifunctional enzymes that catalyze both reactions of proline catabolism. Type A PutAs are the smallest members of the family, possessing a minimal domain architecture consisting of N-terminal proline dehydrogenase and C-terminal l-glutamate-γ-semialdehyde dehydrogenase modules. Type A PutAs form domain-swapped dimers, and in one case (Bradyrhizobium japonicum PutA), two of the dimers assemble into a ring-shaped tetramer. Whereas the dimer has a clear role in substrate channeling, the functional significance of the tetramer is unknown. To address this question, we performed structural studies of four-type A PutAs from two clades of the PutA tree. The crystal structure of Bdellovibrio bacteriovorus PutA covalently inactivated by N-propargylglycine revealed a fold and substrate-channeling tunnel similar to other PutAs. Small-angle X-ray scattering (SAXS) and analytical ultracentrifugation indicated that Bdellovibrio PutA is dimeric in solution, in contrast to the prediction from crystal packing of a stable tetrameric assembly. SAXS studies of two other type A PutAs from separate clades also suggested that the dimer predominates in solution. To assess whether the tetramer of B. japonicum PutA is necessary for catalytic function, a hot spot disruption mutant that cleanly produces dimeric protein was generated. The dimeric variant exhibited kinetic parameters similar to the wild-type enzyme. These results implicate the domain-swapped dimer as the core structural and functional unit of type A PutAs.

ENZYMES

Proline dehydrogenase (EC 1.5.5.2); l-glutamate-γ-semialdehyde dehydrogenase (EC 1.2.1.88).

DATABASES

The atomic coordinates and structure factor amplitudes have been deposited in the Protein Data Bank under accession number 5UR2. The SAXS data have been deposited in the SASBDB under the following accession codes: SASDCP3 (BbPutA), SASDCQ3 (DvPutA 1.5 mg·mL ), SASDCX3 (DvPutA 3.0 mg·mL ), SASDCY3 (DvPutA 4.5 mg·mL ), SASDCR3 (LpPutA 3.0 mg·mL ), SASDCV3 (LpPutA 5.0 mg·mL ), SASDCW3 (LpPutA 8.0 mg·mL ), SASDCS3 (BjPutA 2.3 mg·mL ), SASDCT3 (BjPutA 4.7 mg·mL ), SASDCU3 (BjPutA 7.0 mg·mL ), SASDCZ3 (R51E 2.3 mg·mL ), SASDC24 (R51E 4.7 mg·mL ), SASDC34 (R51E 7.0 mg·mL ).

摘要

未标记

许多酶形成同型寡聚体,然而自我缔合的功能意义却很少是显而易见的。在此,我们研究脯氨酸利用A(PutA)酶的寡聚化与催化功能之间的联系。PutA酶是催化脯氨酸分解代谢两个反应的双功能酶。A型PutA是该家族中最小的成员,具有由N端脯氨酸脱氢酶和C端L-谷氨酸-γ-半醛脱氢酶模块组成的最小结构域架构。A型PutA形成结构域交换二聚体,在一个例子中(日本慢生根瘤菌PutA),两个二聚体组装成环形四聚体。虽然二聚体在底物通道化中具有明确作用,但四聚体的功能意义尚不清楚。为了解决这个问题,我们对来自PutA树两个进化枝的四种A型PutA进行了结构研究。被N-炔丙基甘氨酸共价灭活的食菌蛭弧菌PutA的晶体结构揭示了与其他PutA相似的折叠和底物通道化隧道。小角X射线散射(SAXS)和分析超速离心表明,与稳定四聚体组装的晶体堆积预测相反,食菌蛭弧菌PutA在溶液中是二聚体。对来自不同进化枝的另外两种A型PutA的SAXS研究也表明二聚体在溶液中占主导。为了评估日本慢生根瘤菌PutA的四聚体对于催化功能是否必要,产生了一个能清晰产生二聚体蛋白的热点破坏突变体。二聚体变体表现出与野生型酶相似的动力学参数。这些结果表明结构域交换二聚体是A型PutA的核心结构和功能单元。

脯氨酸脱氢酶(EC 1.5.5.2);L-谷氨酸-γ-半醛脱氢酶(EC 1.2.1.88)。

数据库

原子坐标和结构因子振幅已存入蛋白质数据库,登录号为5UR2。SAXS数据已存入SASBDB,登录代码如下:SASDCP3(BbPutA)、SASDCQ3(DvPutA 1.5 mg·mL)、SASDCX3(DvPutA 3.0 mg·mL)、SASDCY3(DvPutA 4.5 mg·mL)、SASDCR3(LpPutA 3.0 mg·mL)、SASDCV3(LpPutA 5.0 mg·mL)、SASDCW3(LpPutA 8.0 mg·mL)、SASDCS3(BjPutA 2.3 mg·mL)、SASDCT3(BjPutA 4.7 mg·mL)、SASDCU3(BjPutA 7.0 mg·mL)、SASDCZ3(R51E 2.3 mg·mL)、SASDC24(R51E 4.7 mg·mL)、SASDC34(R51E 7.0 mg·mL)。

相似文献

1
Biophysical investigation of type A PutAs reveals a conserved core oligomeric structure.
FEBS J. 2017 Sep;284(18):3029-3049. doi: 10.1111/febs.14165. Epub 2017 Aug 1.
3
Unique structural features and sequence motifs of proline utilization A (PutA).
Front Biosci (Landmark Ed). 2012 Jan 1;17(2):556-68. doi: 10.2741/3943.
5
Redox Modulation of Oligomeric State in Proline Utilization A.
Biophys J. 2018 Jun 19;114(12):2833-2843. doi: 10.1016/j.bpj.2018.04.046.
6
Structures of the PutA peripheral membrane flavoenzyme reveal a dynamic substrate-channeling tunnel and the quinone-binding site.
Proc Natl Acad Sci U S A. 2014 Mar 4;111(9):3389-94. doi: 10.1073/pnas.1321621111. Epub 2014 Feb 18.
10
Structural Basis for the Substrate Inhibition of Proline Utilization A by Proline.
Molecules. 2017 Dec 23;23(1):32. doi: 10.3390/molecules23010032.

引用本文的文献

2
Noncovalent Inhibition and Covalent Inactivation of Proline Dehydrogenase by Analogs of -Propargylglycine.
Biochemistry. 2024 Nov 5;63(21):2855-2867. doi: 10.1021/acs.biochem.4c00429. Epub 2024 Oct 22.
3
Therapeutic targeting of HYPDH/PRODH2 with N-propargylglycine offers a Hyperoxaluria treatment opportunity.
Biochim Biophys Acta Mol Basis Dis. 2024 Jan;1870(1):166848. doi: 10.1016/j.bbadis.2023.166848. Epub 2023 Aug 14.
7
Covalent Modification of the Flavin in Proline Dehydrogenase by Thiazolidine-2-Carboxylate.
ACS Chem Biol. 2020 Apr 17;15(4):936-944. doi: 10.1021/acschembio.9b00935. Epub 2020 Mar 18.
9
Redox Modulation of Oligomeric State in Proline Utilization A.
Biophys J. 2018 Jun 19;114(12):2833-2843. doi: 10.1016/j.bpj.2018.04.046.
10
The Proline Cycle As a Potential Cancer Therapy Target.
Biochemistry. 2018 Jun 26;57(25):3433-3444. doi: 10.1021/acs.biochem.8b00215. Epub 2018 Apr 23.

本文引用的文献

2
Resolving the cofactor-binding site in the proline biosynthetic enzyme human pyrroline-5-carboxylate reductase 1.
J Biol Chem. 2017 Apr 28;292(17):7233-7243. doi: 10.1074/jbc.M117.780288. Epub 2017 Mar 3.
3
Impact of disease-Linked mutations targeting the oligomerization interfaces of aldehyde dehydrogenase 7A1.
Chem Biol Interact. 2017 Oct 1;276:31-39. doi: 10.1016/j.cbi.2017.01.002. Epub 2017 Jan 10.
5
, a program for rapid shape determination in small-angle scattering.
J Appl Crystallogr. 2009 Apr 1;42(Pt 2):342-346. doi: 10.1107/S0021889809000338. Epub 2009 Jan 24.
7
Structure, dynamics, assembly, and evolution of protein complexes.
Annu Rev Biochem. 2015;84:551-75. doi: 10.1146/annurev-biochem-060614-034142. Epub 2014 Dec 8.
9
SASBDB, a repository for biological small-angle scattering data.
Nucleic Acids Res. 2015 Jan;43(Database issue):D357-63. doi: 10.1093/nar/gku1047. Epub 2014 Oct 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验