Suppr超能文献

脯氨酸利用 A(PutA)的独特结构特征和序列基序。

Unique structural features and sequence motifs of proline utilization A (PutA).

机构信息

Departments of Chemistry and Biochemistry, University of Missouri-Columbia, Columbia, MO 65211, USA.

出版信息

Front Biosci (Landmark Ed). 2012 Jan 1;17(2):556-68. doi: 10.2741/3943.

Abstract

Proline utilization A proteins (PutAs) are bifunctional enzymes that catalyze the oxidation of proline to glutamate using spatially separated proline dehydrogenase and pyrroline-5-carboxylate dehydrogenase active sites. Here we use the crystal structure of the minimalist PutA from Bradyrhizobium japonicum (BjPutA) along with sequence analysis to identify unique structural features of PutAs. This analysis shows that PutAs have secondary structural elements and domains not found in the related monofunctional enzymes. Some of these extra features are predicted to be important for substrate channeling in BjPutA. Multiple sequence alignment analysis shows that some PutAs have a 17-residue conserved motif in the C-terminal 20-30 residues of the polypeptide chain. The BjPutA structure shows that this motif helps seal the internal substrate-channeling cavity from the bulk medium. Finally, it is shown that some PutAs have a 100-200 residue domain of unknown function in the C-terminus that is not found in minimalist PutAs. Remote homology detection suggests that this domain is homologous to the oligomerization beta-hairpin and Rossmann fold domain of BjPutA.

摘要

脯氨酸利用 A 蛋白(PutAs)是双功能酶,利用空间分离的脯氨酸脱氢酶和吡咯啉-5-羧酸脱氢酶活性位点将脯氨酸氧化为谷氨酸。在这里,我们使用来自根瘤菌(BjPutA)的最小 PutA 的晶体结构以及序列分析来鉴定 PutAs 的独特结构特征。该分析表明,PutAs 具有在相关单功能酶中未发现的二级结构元件和结构域。其中一些额外的特征预计对 BjPutA 中的底物通道化很重要。多重序列比对分析表明,一些 PutAs 在多肽链的 C 末端 20-30 个残基中具有 17 个残基的保守基序。BjPutA 结构表明,该基序有助于将内部底物通道腔与主体介质隔离。最后,表明一些 PutAs 在 C 端具有未知功能的 100-200 个残基结构域,而最小 PutAs 中不存在该结构域。远程同源性检测表明,该结构域与 BjPutA 的寡聚β发夹和 Rossmann 折叠结构域同源。

相似文献

1
Unique structural features and sequence motifs of proline utilization A (PutA).
Front Biosci (Landmark Ed). 2012 Jan 1;17(2):556-68. doi: 10.2741/3943.
2
Biophysical investigation of type A PutAs reveals a conserved core oligomeric structure.
FEBS J. 2017 Sep;284(18):3029-3049. doi: 10.1111/febs.14165. Epub 2017 Aug 1.
5
Kinetic and structural characterization of tunnel-perturbing mutants in Bradyrhizobium japonicum proline utilization A.
Biochemistry. 2014 Aug 12;53(31):5150-61. doi: 10.1021/bi5007404. Epub 2014 Jul 30.
6
Structure, function, and mechanism of proline utilization A (PutA).
Arch Biochem Biophys. 2017 Oct 15;632:142-157. doi: 10.1016/j.abb.2017.07.005. Epub 2017 Jul 14.
7
Substrate channeling in proline metabolism.
Front Biosci (Landmark Ed). 2012 Jan 1;17(1):375-88. doi: 10.2741/3932.
8
Isolation, DNA sequence analysis, and mutagenesis of a proline dehydrogenase gene (putA) from Bradyrhizobium japonicum.
Appl Environ Microbiol. 1996 Jan;62(1):221-9. doi: 10.1128/aem.62.1.221-229.1996.

引用本文的文献

1
Proline utilization A controls bacterial pathogenicity by sensing its substrate and cofactors.
Commun Biol. 2022 May 25;5(1):496. doi: 10.1038/s42003-022-03451-4.
2
Crystal Structure of Aldehyde Dehydrogenase 16 Reveals Trans-Hierarchical Structural Similarity and a New Dimer.
J Mol Biol. 2019 Feb 1;431(3):524-541. doi: 10.1016/j.jmb.2018.11.030. Epub 2018 Dec 7.
3
PutA Is Required for Virulence and Regulated by PruR in .
Front Microbiol. 2018 Mar 26;9:548. doi: 10.3389/fmicb.2018.00548. eCollection 2018.
4
Role of Proline in Pathogen and Host Interactions.
Antioxid Redox Signal. 2019 Feb 1;30(4):683-709. doi: 10.1089/ars.2017.7335. Epub 2018 Feb 2.
5
Structural Biology of Proline Catabolic Enzymes.
Antioxid Redox Signal. 2019 Feb 1;30(4):650-673. doi: 10.1089/ars.2017.7374. Epub 2017 Nov 13.
6
Structure, function, and mechanism of proline utilization A (PutA).
Arch Biochem Biophys. 2017 Oct 15;632:142-157. doi: 10.1016/j.abb.2017.07.005. Epub 2017 Jul 14.
10
Structures of the PutA peripheral membrane flavoenzyme reveal a dynamic substrate-channeling tunnel and the quinone-binding site.
Proc Natl Acad Sci U S A. 2014 Mar 4;111(9):3389-94. doi: 10.1073/pnas.1321621111. Epub 2014 Feb 18.

本文引用的文献

1
Substrate channeling in proline metabolism.
Front Biosci (Landmark Ed). 2012 Jan 1;17(1):375-88. doi: 10.2741/3932.
2
Crystal structure of the bifunctional proline utilization A flavoenzyme from Bradyrhizobium japonicum.
Proc Natl Acad Sci U S A. 2010 Feb 16;107(7):2878-83. doi: 10.1073/pnas.0906101107. Epub 2010 Feb 1.
5
Three crystal forms of the bifunctional enzyme proline utilization A (PutA) from Bradyrhizobium japonicum.
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2008 Oct 1;64(Pt 10):949-53. doi: 10.1107/S174430910802842X. Epub 2008 Sep 30.
6
The metabolism of proline as microenvironmental stress substrate.
J Nutr. 2008 Oct;138(10):2008S-2015S. doi: 10.1093/jn/138.10.2008S.
7
Solution structure of the Pseudomonas putida protein PpPutA45 and its DNA complex.
Proteins. 2009 Apr;75(1):12-27. doi: 10.1002/prot.22217.
8
Structural basis of the transcriptional regulation of the proline utilization regulon by multifunctional PutA.
J Mol Biol. 2008 Aug 1;381(1):174-88. doi: 10.1016/j.jmb.2008.05.084. Epub 2008 Jun 7.
9
Characterization of a Helicobacter hepaticus putA mutant strain in host colonization and oxidative stress.
Infect Immun. 2008 Jul;76(7):3037-44. doi: 10.1128/IAI.01737-07. Epub 2008 May 5.
10
Structural basis for the inactivation of Thermus thermophilus proline dehydrogenase by N-propargylglycine.
Biochemistry. 2008 May 20;47(20):5573-80. doi: 10.1021/bi800055w. Epub 2008 Apr 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验