Suppr超能文献

噻唑烷-2-羧酸对脯氨酸脱氢酶中黄素的共价修饰。

Covalent Modification of the Flavin in Proline Dehydrogenase by Thiazolidine-2-Carboxylate.

机构信息

Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States.

Department of Biochemistry, Redox Biology Center, University of Nebraska, Lincoln, Nebraska 68588, United States.

出版信息

ACS Chem Biol. 2020 Apr 17;15(4):936-944. doi: 10.1021/acschembio.9b00935. Epub 2020 Mar 18.

Abstract

Proline dehydrogenase (PRODH) catalyzes the first step of proline catabolism, the FAD-dependent 2-electron oxidation of l-proline to Δ-pyrroline-5-carboxylate. PRODH has emerged as a possible cancer therapy target, and thus the inhibition of PRODH is of interest. Here we show that the proline analogue thiazolidine-2-carboxylate (T2C) is a mechanism-based inactivator of PRODH. Structures of the bifunctional proline catabolic enzyme proline utilization A (PutA) determined from crystals grown in the presence of T2C feature strong electron density for a 5-membered ring species resembling l-T2C covalently bound to the N5 of the FAD in the PRODH domain. The modified FAD exhibits a large butterfly bend angle, indicating that the FAD is locked into the 2-electron reduced state. Reduction of the FAD is consistent with the crystals lacking the distinctive yellow color of the oxidized enzyme and stopped-flow kinetic data showing that T2C is a substrate for the PRODH domain of PutA. A mechanism is proposed in which PRODH catalyzes the oxidation of T2C at the C atom adjacent to the S atom of the thiazolidine ring (C5). Then, the N5 atom of the reduced FAD attacks the C5 of the oxidized T2C species, resulting in the covalent adduct observed in the crystal structure. To our knowledge, this is the first report of T2C inactivating (or inhibiting) PRODH or any other flavoenzyme. These results may inform the design of new mechanism-based inactivators of PRODH for use as chemical probes to study the roles of proline metabolism in cancer.

摘要

脯氨酸脱氢酶(PRODH)催化脯氨酸分解代谢的第一步,即 FAD 依赖性的 l-脯氨酸向 Δ-吡咯啉-5-羧酸的 2 电子氧化。PRODH 已成为一种可能的癌症治疗靶点,因此抑制 PRODH 引起了人们的兴趣。本文展示了脯氨酸类似物噻唑烷-2-羧酸(T2C)是 PRODH 的一种基于机制的抑制剂。在 T2C 存在下生长的晶体中确定的多功能脯氨酸分解代谢酶脯氨酸利用 A(PutA)的结构特征是强烈的电子密度,类似于 l-T2C 与 PRODH 结构域中 FAD 的 N5 共价结合。修饰后的 FAD 表现出较大的蝶形弯曲角度,表明 FAD 被锁定在 2 电子还原状态。FAD 的还原与晶体缺乏氧化酶特有的黄色一致,并且停流动力学数据表明 T2C 是 PutA 的 PRODH 结构域的底物。提出了一种机制,其中 PRODH 催化 T2C 在噻唑烷环的 S 原子相邻的 C 原子(C5)处氧化。然后,还原 FAD 的 N5 原子攻击氧化的 T2C 物种的 C5,导致在晶体结构中观察到的共价加合物。据我们所知,这是 T2C 首次报道失活(或抑制)PRODH 或任何其他黄素酶。这些结果可能为设计新的基于机制的 PRODH 失活剂提供信息,以作为研究脯氨酸代谢在癌症中的作用的化学探针。

相似文献

1
Covalent Modification of the Flavin in Proline Dehydrogenase by Thiazolidine-2-Carboxylate.
ACS Chem Biol. 2020 Apr 17;15(4):936-944. doi: 10.1021/acschembio.9b00935. Epub 2020 Mar 18.
2
Evidence for Proline Catabolic Enzymes in the Metabolism of Thiazolidine Carboxylates.
Biochemistry. 2021 Nov 30;60(47):3610-3620. doi: 10.1021/acs.biochem.1c00625. Epub 2021 Nov 9.
5
Structure-based engineering of minimal proline dehydrogenase domains for inhibitor discovery.
Protein Eng Des Sel. 2022 Feb 17;35. doi: 10.1093/protein/gzac016.
6
Rapid reaction kinetics of proline dehydrogenase in the multifunctional proline utilization A protein.
Biochemistry. 2012 Jan 10;51(1):511-20. doi: 10.1021/bi201603f. Epub 2011 Dec 15.
8
Structure and kinetics of monofunctional proline dehydrogenase from Thermus thermophilus.
J Biol Chem. 2007 May 11;282(19):14316-27. doi: 10.1074/jbc.M700912200. Epub 2007 Mar 7.
9
Structural Basis for the Substrate Inhibition of Proline Utilization A by Proline.
Molecules. 2017 Dec 23;23(1):32. doi: 10.3390/molecules23010032.
10
Photoinduced Covalent Irreversible Inactivation of Proline Dehydrogenase by S-Heterocycles.
ACS Chem Biol. 2021 Nov 19;16(11):2268-2279. doi: 10.1021/acschembio.1c00427. Epub 2021 Sep 20.

引用本文的文献

4
Noncovalent Inhibition and Covalent Inactivation of Proline Dehydrogenase by Analogs of -Propargylglycine.
Biochemistry. 2024 Nov 5;63(21):2855-2867. doi: 10.1021/acs.biochem.4c00429. Epub 2024 Oct 22.
5
Novel Fragment Inhibitors of PYCR1 from Docking-Guided X-ray Crystallography.
J Chem Inf Model. 2024 Mar 11;64(5):1704-1718. doi: 10.1021/acs.jcim.3c01879. Epub 2024 Feb 27.
6
Structure-based engineering of minimal proline dehydrogenase domains for inhibitor discovery.
Protein Eng Des Sel. 2022 Feb 17;35. doi: 10.1093/protein/gzac016.
8
Evidence for Proline Catabolic Enzymes in the Metabolism of Thiazolidine Carboxylates.
Biochemistry. 2021 Nov 30;60(47):3610-3620. doi: 10.1021/acs.biochem.1c00625. Epub 2021 Nov 9.
9
Photoinduced Covalent Irreversible Inactivation of Proline Dehydrogenase by S-Heterocycles.
ACS Chem Biol. 2021 Nov 19;16(11):2268-2279. doi: 10.1021/acschembio.1c00427. Epub 2021 Sep 20.

本文引用的文献

2
Synthesis, Reactivity, and Stereoselectivity of 4-Thiofuranosides.
J Org Chem. 2019 Feb 1;84(3):1218-1227. doi: 10.1021/acs.joc.8b02536. Epub 2019 Jan 14.
3
The Proline Cycle As a Potential Cancer Therapy Target.
Biochemistry. 2018 Jun 26;57(25):3433-3444. doi: 10.1021/acs.biochem.8b00215. Epub 2018 Apr 23.
4
Structural Basis for the Substrate Inhibition of Proline Utilization A by Proline.
Molecules. 2017 Dec 23;23(1):32. doi: 10.3390/molecules23010032.
5
Validation of Structures in the Protein Data Bank.
Structure. 2017 Dec 5;25(12):1916-1927. doi: 10.1016/j.str.2017.10.009. Epub 2017 Nov 22.
6
Structural Biology of Proline Catabolic Enzymes.
Antioxid Redox Signal. 2019 Feb 1;30(4):650-673. doi: 10.1089/ars.2017.7374. Epub 2017 Nov 13.
7
Structure, function, and mechanism of proline utilization A (PutA).
Arch Biochem Biophys. 2017 Oct 15;632:142-157. doi: 10.1016/j.abb.2017.07.005. Epub 2017 Jul 14.
8
Biophysical investigation of type A PutAs reveals a conserved core oligomeric structure.
FEBS J. 2017 Sep;284(18):3029-3049. doi: 10.1111/febs.14165. Epub 2017 Aug 1.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验