Suppr超能文献

多功能脯氨酸利用 A 蛋白中脯氨酸脱氢酶的快速反应动力学。

Rapid reaction kinetics of proline dehydrogenase in the multifunctional proline utilization A protein.

机构信息

Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States.

出版信息

Biochemistry. 2012 Jan 10;51(1):511-20. doi: 10.1021/bi201603f. Epub 2011 Dec 15.

Abstract

The multifunctional proline utilization A (PutA) flavoenzyme from Escherichia coli catalyzes the oxidation of proline to glutamate in two reaction steps using separate proline dehydrogenase (PRODH) and Δ(1)-pyrroline-5-carboxylate (P5C) dehydrogenase domains. Here, the kinetic mechanism of PRODH in PutA is studied by stopped-flow kinetics to determine microscopic rate constants for the proline:ubiquinone oxidoreductase mechanism. Stopped-flow data for proline reduction of the flavin cofactor (reductive half-reaction) and oxidation of reduced flavin by CoQ(1) (oxidative half-reaction) were best-fit by a double exponential from which maximum observable rate constants and apparent equilibrium dissociation constants were determined. Flavin semiquinone was not observed in the reductive or oxidative reactions. Microscopic rate constants for steps in the reductive and oxidative half-reactions were obtained by globally fitting the stopped-flow data to a simulated mechanism that includes a chemical step followed by an isomerization event. A microscopic rate constant of 27.5 s(-1) was determined for proline reduction of the flavin cofactor followed by an isomerization step of 2.2 s(-1). The isomerization step is proposed to report on a previously identified flavin-dependent conformational change [Zhang, W. et al. (2007) Biochemistry 46, 483-491] that is important for PutA functional switching but is not kinetically relevant to the in vitro mechanism. Using CoQ(1), a soluble analogue of ubiquinone, a rate constant of 5.4 s(-1) was obtained for the oxidation of flavin, thus indicating that this oxidative step is rate-limiting for k(cat) during catalytic turnover. Steady-state kinetic constants calculated from the microscopic rate constants agree with the experimental k(cat) and k(cat)/K(m) parameters.

摘要

大肠杆菌多功能脯氨酸利用 A(PutA)黄素酶通过使用单独的脯氨酸脱氢酶(PRODH)和Δ(1)-吡咯啉-5-羧酸(P5C)脱氢酶结构域,分两步将脯氨酸氧化为谷氨酸。在此,通过停流动力学研究 PutA 中的 PRODH 的动力学机制,以确定用于脯氨酸:泛醌氧化还原酶机制的微观速率常数。黄素辅因子的脯氨酸还原(还原半反应)和 CoQ(1)氧化还原的黄素(氧化半反应)的停流数据通过双指数拟合最佳,从中确定了最大可观测速率常数和表观平衡解离常数。在还原或氧化反应中均未观察到黄素半醌。通过全局拟合停流数据到包括化学步骤和异构化事件的模拟机制,获得了还原和氧化半反应中各步骤的微观速率常数。确定了黄素辅因子还原的微观速率常数为 27.5 s(-1),随后是 2.2 s(-1)的异构化步骤。该异构化步骤据报道是先前鉴定的黄素依赖性构象变化[Zhang,W.等人。(2007)生物化学46,483-491]的报告,该变化对于 PutA 功能切换很重要,但与体外机制的动力学无关。使用 CoQ(1),泛醌的可溶性类似物,获得了黄素氧化的速率常数为 5.4 s(-1),这表明该氧化步骤是催化周转过程中 k(cat)的限速步骤。从微观速率常数计算出的稳态动力学常数与实验 k(cat)和 k(cat)/ K(m)参数相符。

相似文献

1
Rapid reaction kinetics of proline dehydrogenase in the multifunctional proline utilization A protein.
Biochemistry. 2012 Jan 10;51(1):511-20. doi: 10.1021/bi201603f. Epub 2011 Dec 15.
3
Steady-state kinetic mechanism of the proline:ubiquinone oxidoreductase activity of proline utilization A (PutA) from Escherichia coli.
Arch Biochem Biophys. 2011 Dec 15;516(2):113-20. doi: 10.1016/j.abb.2011.10.011. Epub 2011 Oct 25.
5
Structure, function, and mechanism of proline utilization A (PutA).
Arch Biochem Biophys. 2017 Oct 15;632:142-157. doi: 10.1016/j.abb.2017.07.005. Epub 2017 Jul 14.
6
Flavin redox state triggers conformational changes in the PutA protein from Escherichia coli.
Biochemistry. 2003 May 13;42(18):5469-77. doi: 10.1021/bi0272196.
9
Effects of proline analog binding on the spectroscopic and redox properties of PutA.
Arch Biochem Biophys. 2002 Dec 1;408(1):131-6. doi: 10.1016/s0003-9861(02)00535-0.
10
Regulation of PutA-membrane associations by flavin adenine dinucleotide reduction.
Biochemistry. 2004 Oct 19;43(41):13165-74. doi: 10.1021/bi048596g.

引用本文的文献

1
Metabolic collaboration between cells in the tumor microenvironment has a negligible effect on tumor growth.
Innovation (Camb). 2024 Jan 30;5(2):100583. doi: 10.1016/j.xinn.2024.100583. eCollection 2024 Mar 4.
2
Computational insights on the hydride and proton transfer mechanisms of L-proline dehydrogenase.
PLoS One. 2023 Nov 15;18(11):e0290901. doi: 10.1371/journal.pone.0290901. eCollection 2023.
5
Evidence for Proline Catabolic Enzymes in the Metabolism of Thiazolidine Carboxylates.
Biochemistry. 2021 Nov 30;60(47):3610-3620. doi: 10.1021/acs.biochem.1c00625. Epub 2021 Nov 9.
6
Production of l-glutamate family amino acids in : Physiological mechanism, genetic modulation, and prospects.
Synth Syst Biotechnol. 2021 Sep 20;6(4):302-325. doi: 10.1016/j.synbio.2021.09.005. eCollection 2021 Dec.
7
Probing the function of a ligand-modulated dynamic tunnel in bifunctional proline utilization A (PutA).
Arch Biochem Biophys. 2021 Nov 15;712:109025. doi: 10.1016/j.abb.2021.109025. Epub 2021 Sep 15.
8
Detailed evaluation of pyruvate dehydrogenase complex inhibition in simulated exercise conditions.
Biophys J. 2021 Mar 2;120(5):936-949. doi: 10.1016/j.bpj.2021.01.018. Epub 2021 Jan 28.
9
Mechanisms of ligand binding.
Biophys Rev (Melville). 2020 Dec;1(1):011303. doi: 10.1063/5.0020997.
10
Covalent Modification of the Flavin in Proline Dehydrogenase by Thiazolidine-2-Carboxylate.
ACS Chem Biol. 2020 Apr 17;15(4):936-944. doi: 10.1021/acschembio.9b00935. Epub 2020 Mar 18.

本文引用的文献

1
Steady-state kinetic mechanism of the proline:ubiquinone oxidoreductase activity of proline utilization A (PutA) from Escherichia coli.
Arch Biochem Biophys. 2011 Dec 15;516(2):113-20. doi: 10.1016/j.abb.2011.10.011. Epub 2011 Oct 25.
2
Flavin redox switching of protein functions.
Antioxid Redox Signal. 2011 Mar 15;14(6):1079-91. doi: 10.1089/ars.2010.3417. Epub 2010 Oct 28.
3
Crystal structure of the bifunctional proline utilization A flavoenzyme from Bradyrhizobium japonicum.
Proc Natl Acad Sci U S A. 2010 Feb 16;107(7):2878-83. doi: 10.1073/pnas.0906101107. Epub 2010 Feb 1.
4
Fitting enzyme kinetic data with KinTek Global Kinetic Explorer.
Methods Enzymol. 2009;467:601-626. doi: 10.1016/S0076-6879(09)67023-3.
5
FitSpace explorer: an algorithm to evaluate multidimensional parameter space in fitting kinetic data.
Anal Biochem. 2009 Apr 1;387(1):30-41. doi: 10.1016/j.ab.2008.12.025. Epub 2008 Dec 25.
6
Global kinetic explorer: a new computer program for dynamic simulation and fitting of kinetic data.
Anal Biochem. 2009 Apr 1;387(1):20-9. doi: 10.1016/j.ab.2008.12.024. Epub 2008 Dec 25.
7
The metabolism of proline as microenvironmental stress substrate.
J Nutr. 2008 Oct;138(10):2008S-2015S. doi: 10.1093/jn/138.10.2008S.
8
Solution structure of the Pseudomonas putida protein PpPutA45 and its DNA complex.
Proteins. 2009 Apr;75(1):12-27. doi: 10.1002/prot.22217.
9
Structural basis of the transcriptional regulation of the proline utilization regulon by multifunctional PutA.
J Mol Biol. 2008 Aug 1;381(1):174-88. doi: 10.1016/j.jmb.2008.05.084. Epub 2008 Jun 7.
10
Characterization of a Helicobacter hepaticus putA mutant strain in host colonization and oxidative stress.
Infect Immun. 2008 Jul;76(7):3037-44. doi: 10.1128/IAI.01737-07. Epub 2008 May 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验