Suppr超能文献

探究双功能脯氨酸利用 A(PutA)中配体调节动态隧道的功能。

Probing the function of a ligand-modulated dynamic tunnel in bifunctional proline utilization A (PutA).

机构信息

Department of Biochemistry, University of Missouri, Columbia, MO, 65211, United States.

Department Biochemistry and the Redox Biology Center, University of Nebraska, Lincoln, NE, 68588, United States.

出版信息

Arch Biochem Biophys. 2021 Nov 15;712:109025. doi: 10.1016/j.abb.2021.109025. Epub 2021 Sep 15.

Abstract

In many bacteria, the reactions of proline catabolism are catalyzed by the bifunctional enzyme known as proline utilization A (PutA). PutA catalyzes the two-step oxidation of l-proline to l-glutamate using distinct proline dehydrogenase (PRODH) and l-glutamate-γ-semialdehyde dehydrogenase (GSALDH) active sites, which are separated by over 40 Å and connected by a complex tunnel system. The tunnel system consists of a main tunnel that connects the two active sites and functions in substrate channeling, plus six ancillary tunnels whose functions are unknown. Here we used tunnel-blocking mutagenesis to probe the role of a dynamic ancillary tunnel (tunnel 2a) whose shape is modulated by ligand binding to the PRODH active site. The 1.90 Å resolution crystal structure of Geobacter sulfurreducens PutA variant A206W verified that the side chain of Trp206 cleanly blocks tunnel 2a without perturbing the surrounding structure. Steady-state kinetic measurements indicate the mutation impaired PRODH activity without affecting the GSALDH activity. Single-turnover experiments corroborated a severe impairment of PRODH activity with flavin reduction decreased by nearly 600-fold in A206W relative to wild-type. Substrate channeling is also significantly impacted as A206W exhibited a 3000-fold lower catalytic efficiency in coupled PRODH-GSALDH activity assays, which measure NADH formation as a function of proline. The structure suggests that Trp206 inhibits binding of the substrate l-proline by preventing the formation of a conserved glutamate-arginine ion pair and closure of the PRODH active site. Our data are consistent with tunnel 2a serving as an open space through which the glutamate of the ion pair travels during the opening and closing of the active site in response to binding l-proline. These results confirm the essentiality of the conserved ion pair in binding l-proline and support the hypothesis that the ion pair functions as a gate that controls access to the PRODH active site.

摘要

在许多细菌中,脯氨酸分解代谢的反应是由一种被称为脯氨酸利用 A(PutA)的双功能酶催化的。PutA 使用不同的脯氨酸脱氢酶(PRODH)和 l-谷氨酸-γ-半醛脱氢酶(GSALDH)活性位点,催化 l-脯氨酸的两步氧化,形成 l-谷氨酸,这两个活性位点之间的距离超过 40Å,并通过一个复杂的隧道系统连接。该隧道系统由一个主隧道组成,该主隧道连接两个活性位点,并在底物通道化中发挥作用,另外还有六个辅助隧道,其功能尚不清楚。在这里,我们使用隧道阻塞突变来探测一个动态辅助隧道(隧道 2a)的作用,该隧道的形状由结合到 PRODH 活性位点的配体调节。分辨率为 1.90Å的 Geobacter sulfurreducens PutA 变体 A206W 的晶体结构证实,Trp206 的侧链可以干净地阻塞隧道 2a,而不会干扰周围结构。稳态动力学测量表明,该突变损害了 PRODH 活性,而不影响 GSALDH 活性。单轮实验证实,与野生型相比,A206W 的 PRODH 活性严重受损,黄素还原减少了近 600 倍。底物通道化也受到显著影响,因为 A206W 在耦合 PRODH-GSALDH 活性测定中表现出 3000 倍的催化效率降低,该测定以 NADH 的形成作为脯氨酸的函数。该结构表明,Trp206 通过阻止形成保守的谷氨酸-精氨酸离子对和关闭 PRODH 活性位点,抑制底物 l-脯氨酸的结合。我们的数据与隧道 2a 作为一个开放空间一致,在响应于结合 l-脯氨酸时,离子对的谷氨酸在活性位点的打开和关闭过程中通过该空间传输。这些结果证实了保守的离子对在结合 l-脯氨酸中的必要性,并支持了这样的假设,即该离子对作为控制进入 PRODH 活性位点的入口的门控。

相似文献

1
Probing the function of a ligand-modulated dynamic tunnel in bifunctional proline utilization A (PutA).
Arch Biochem Biophys. 2021 Nov 15;712:109025. doi: 10.1016/j.abb.2021.109025. Epub 2021 Sep 15.
3
Structural Basis for the Substrate Inhibition of Proline Utilization A by Proline.
Molecules. 2017 Dec 23;23(1):32. doi: 10.3390/molecules23010032.
4
Structures of the PutA peripheral membrane flavoenzyme reveal a dynamic substrate-channeling tunnel and the quinone-binding site.
Proc Natl Acad Sci U S A. 2014 Mar 4;111(9):3389-94. doi: 10.1073/pnas.1321621111. Epub 2014 Feb 18.
8
Structure, function, and mechanism of proline utilization A (PutA).
Arch Biochem Biophys. 2017 Oct 15;632:142-157. doi: 10.1016/j.abb.2017.07.005. Epub 2017 Jul 14.
9
Structural Biology of Proline Catabolic Enzymes.
Antioxid Redox Signal. 2019 Feb 1;30(4):650-673. doi: 10.1089/ars.2017.7374. Epub 2017 Nov 13.
10
Kinetic and structural characterization of tunnel-perturbing mutants in Bradyrhizobium japonicum proline utilization A.
Biochemistry. 2014 Aug 12;53(31):5150-61. doi: 10.1021/bi5007404. Epub 2014 Jul 30.

引用本文的文献

本文引用的文献

1
Substrate inhibition by the blockage of product release and its control by tunnel engineering.
RSC Chem Biol. 2021 Jan 11;2(2):645-655. doi: 10.1039/d0cb00171f. eCollection 2021 Apr 1.
2
The impact of tunnel mutations on enzymatic catalysis depends on the tunnel-substrate complementarity and the rate-limiting step.
Comput Struct Biotechnol J. 2020 Mar 25;18:805-813. doi: 10.1016/j.csbj.2020.03.017. eCollection 2020.
3
Tunnel engineering to accelerate product release for better biomass-degrading abilities in lignocellulolytic enzymes.
Biotechnol Biofuels. 2019 Nov 23;12:275. doi: 10.1186/s13068-019-1616-3. eCollection 2019.
4
MOLEonline: a web-based tool for analyzing channels, tunnels and pores (2018 update).
Nucleic Acids Res. 2018 Jul 2;46(W1):W368-W373. doi: 10.1093/nar/gky309.
5
Validation of Structures in the Protein Data Bank.
Structure. 2017 Dec 5;25(12):1916-1927. doi: 10.1016/j.str.2017.10.009. Epub 2017 Nov 22.
6
Structural Biology of Proline Catabolic Enzymes.
Antioxid Redox Signal. 2019 Feb 1;30(4):650-673. doi: 10.1089/ars.2017.7374. Epub 2017 Nov 13.
7
Structure, function, and mechanism of proline utilization A (PutA).
Arch Biochem Biophys. 2017 Oct 15;632:142-157. doi: 10.1016/j.abb.2017.07.005. Epub 2017 Jul 14.
9
Polder maps: improving OMIT maps by excluding bulk solvent.
Acta Crystallogr D Struct Biol. 2017 Feb 1;73(Pt 2):148-157. doi: 10.1107/S2059798316018210.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验