Suppr超能文献

脯氨酸和羟脯氨酸与双功能脯氨酸利用 A 的 l-谷氨酸-γ-半醛脱氢酶活性位点结合的结构分析。

Structural analysis of prolines and hydroxyprolines binding to the l-glutamate-γ-semialdehyde dehydrogenase active site of bifunctional proline utilization A.

机构信息

Department of Biochemistry, University of Missouri, Columbia, MO, 65211, United States.

Department of Biochemistry, Redox Biology Center, University of Nebraska, Lincoln, NE, 68588, United States.

出版信息

Arch Biochem Biophys. 2021 Feb 15;698:108727. doi: 10.1016/j.abb.2020.108727. Epub 2020 Dec 18.

Abstract

Proline utilization A (PutA) proteins are bifunctional proline catabolic enzymes that catalyze the 4-electron oxidation of l-proline to l-glutamate using spatially-separated proline dehydrogenase and l-glutamate-γ-semialdehyde dehydrogenase (GSALDH, a.k.a. ALDH4A1) active sites. The observation that l-proline inhibits both the GSALDH activity of PutA and monofunctional GSALDHs motivated us to study the inhibition of PutA by proline stereoisomers and analogs. Here we report five high-resolution crystal structures of PutA with the following ligands bound in the GSALDH active site: d-proline, trans-4-hydroxy-d-proline, cis-4-hydroxy-d-proline, l-proline, and trans-4-hydroxy-l-proline. Three of the structures are of ternary complexes of the enzyme with an inhibitor and either NAD or NADH. To our knowledge, the NADH complex is the first for any GSALDH. The structures reveal a conserved mode of recognition of the inhibitor carboxylate, which results in the pyrrolidine rings of the d- and l-isomers having different orientations and different hydrogen bonding environments. Activity assays show that the compounds are weak inhibitors with millimolar inhibition constants. Curiously, although the inhibitors occupy the aldehyde binding site, kinetic measurements show the inhibition is uncompetitive. Uncompetitive inhibition may involve proline binding to a remote site or to the enzyme-NADH complex. Together, the structural and kinetic data expand our understanding of how proline-like molecules interact with GSALDH, reveal insight into the relationship between stereochemistry and inhibitor affinity, and demonstrate the pitfalls of inferring the mechanism of inhibition from crystal structures alone.

摘要

脯氨酸利用 A(PutA)蛋白是具有双功能的脯氨酸分解代谢酶,它使用空间分离的脯氨酸脱氢酶和 l-谷氨酸-γ-半醛脱氢酶(GSALDH,又名 ALDH4A1)活性位点,催化 l-脯氨酸的 4 电子氧化为 l-谷氨酸。观察到 l-脯氨酸抑制 PutA 和单功能 GSALDH 的 GSALDH 活性,这促使我们研究脯氨酸立体异构体和类似物对 PutA 的抑制作用。在这里,我们报告了五个 PutA 的高分辨率晶体结构,其中以下配体结合在 GSALDH 活性位点:d-脯氨酸、反式-4-羟基-d-脯氨酸、顺式-4-羟基-d-脯氨酸、l-脯氨酸和反式-4-羟基-l-脯氨酸。其中三个结构是酶与抑制剂和 NAD 或 NADH 的三元复合物。据我们所知,NADH 复合物是第一个 GSALDH 复合物。这些结构揭示了抑制剂羧酸的保守识别模式,导致 d-和 l-异构体的吡咯烷环具有不同的取向和不同的氢键环境。活性测定表明,这些化合物是具有毫摩尔抑制常数的弱抑制剂。奇怪的是,尽管抑制剂占据了醛结合位点,但动力学测量表明抑制是非竞争性的。非竞争性抑制可能涉及脯氨酸与远程位点或酶-NADH 复合物的结合。总之,结构和动力学数据扩展了我们对脯氨酸样分子与 GSALDH 相互作用的理解,揭示了立体化学与抑制剂亲和力之间的关系,并证明了仅从晶体结构推断抑制机制的陷阱。

相似文献

2
Probing the function of a ligand-modulated dynamic tunnel in bifunctional proline utilization A (PutA).
Arch Biochem Biophys. 2021 Nov 15;712:109025. doi: 10.1016/j.abb.2021.109025. Epub 2021 Sep 15.
3
Structural Basis for the Substrate Inhibition of Proline Utilization A by Proline.
Molecules. 2017 Dec 23;23(1):32. doi: 10.3390/molecules23010032.
5
Evidence for Proline Catabolic Enzymes in the Metabolism of Thiazolidine Carboxylates.
Biochemistry. 2021 Nov 30;60(47):3610-3620. doi: 10.1021/acs.biochem.1c00625. Epub 2021 Nov 9.
8
Biophysical investigation of type A PutAs reveals a conserved core oligomeric structure.
FEBS J. 2017 Sep;284(18):3029-3049. doi: 10.1111/febs.14165. Epub 2017 Aug 1.

引用本文的文献

2
Characterization of the Biological Effect Mediated by Mycobacterial Kinase PknG on Protein Phosphorylation and Acetylation.
ACS Omega. 2025 May 21;10(21):21662-21673. doi: 10.1021/acsomega.5c01032. eCollection 2025 Jun 3.
5
Noncovalent Inhibition and Covalent Inactivation of Proline Dehydrogenase by Analogs of -Propargylglycine.
Biochemistry. 2024 Nov 5;63(21):2855-2867. doi: 10.1021/acs.biochem.4c00429. Epub 2024 Oct 22.
6
Structure-based engineering of minimal proline dehydrogenase domains for inhibitor discovery.
Protein Eng Des Sel. 2022 Feb 17;35. doi: 10.1093/protein/gzac016.

本文引用的文献

1
Covalent Modification of the Flavin in Proline Dehydrogenase by Thiazolidine-2-Carboxylate.
ACS Chem Biol. 2020 Apr 17;15(4):936-944. doi: 10.1021/acschembio.9b00935. Epub 2020 Mar 18.
3
Structural Basis for the Substrate Inhibition of Proline Utilization A by Proline.
Molecules. 2017 Dec 23;23(1):32. doi: 10.3390/molecules23010032.
4
Validation of Structures in the Protein Data Bank.
Structure. 2017 Dec 5;25(12):1916-1927. doi: 10.1016/j.str.2017.10.009. Epub 2017 Nov 22.
5
Structural Biology of Proline Catabolic Enzymes.
Antioxid Redox Signal. 2019 Feb 1;30(4):650-673. doi: 10.1089/ars.2017.7374. Epub 2017 Nov 13.
6
Structure, function, and mechanism of proline utilization A (PutA).
Arch Biochem Biophys. 2017 Oct 15;632:142-157. doi: 10.1016/j.abb.2017.07.005. Epub 2017 Jul 14.
7
Biophysical investigation of type A PutAs reveals a conserved core oligomeric structure.
FEBS J. 2017 Sep;284(18):3029-3049. doi: 10.1111/febs.14165. Epub 2017 Aug 1.
9
Diabetes reversal by inhibition of the low-molecular-weight tyrosine phosphatase.
Nat Chem Biol. 2017 Jun;13(6):624-632. doi: 10.1038/nchembio.2344. Epub 2017 Mar 27.
10
Polder maps: improving OMIT maps by excluding bulk solvent.
Acta Crystallogr D Struct Biol. 2017 Feb 1;73(Pt 2):148-157. doi: 10.1107/S2059798316018210.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验