Suppr超能文献

噻唑烷羧酸代谢中的脯氨酸分解代谢酶的证据。

Evidence for Proline Catabolic Enzymes in the Metabolism of Thiazolidine Carboxylates.

机构信息

Department of Biochemistry, Redox Biology Center, University of Nebraska, Lincoln, Nebraska 68588, United States.

Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588, United States.

出版信息

Biochemistry. 2021 Nov 30;60(47):3610-3620. doi: 10.1021/acs.biochem.1c00625. Epub 2021 Nov 9.

Abstract

Thiazolidine carboxylates such as thiazolidine-4-carboxylate (T4C) and thiazolidine-2-carboxylate (T2C) are naturally occurring sulfur analogues of proline. These compounds have been observed to have both beneficial and toxic effects in cells. Given that proline dehydrogenase has been proposed to be a key enzyme in the oxidative metabolism of thioprolines, we characterized T4C and T2C as substrates of proline catabolic enzymes using proline utilization A (PutA), which is a bifunctional enzyme with proline dehydrogenase (PRODH) and l-glutamate-γ-semialdehyde dehydrogenase (GSALDH) activities. PutA is shown here to catalyze the FAD-dependent PRODH oxidation of both T4C and T2C with catalytic efficiencies significantly higher than with proline. Stopped-flow experiments also demonstrate that l-T4C and l-T2C reduce PutA-bound FAD at rates faster than proline. Unlike proline, however, oxidation of T4C and T2C does not generate a substrate for NAD-dependent GSALDH. Instead, PutA/PRODH oxidation of T4C leads to cysteine formation, whereas oxidation of T2C generates an apparently stable Δ-thiazoline-2-carboxylate species. Our results provide new insights into the metabolism of T2C and T4C.

摘要

噻唑烷羧酸酯,如噻唑烷-4-羧酸酯(T4C)和噻唑烷-2-羧酸酯(T2C),是脯氨酸的天然存在的硫类似物。这些化合物在细胞中被观察到具有有益和毒性作用。鉴于脯氨酸脱氢酶已被提议为硫脯氨酸氧化代谢的关键酶,我们将 T4C 和 T2C 作为脯氨酸分解代谢酶的底物进行了表征,使用脯氨酸利用 A(PutA),这是一种具有脯氨酸脱氢酶(PRODH)和 l-谷氨酸-γ-半醛脱氢酶(GSALDH)活性的双功能酶。PutA 在这里被证明可以催化 FAD 依赖性 PRODH 氧化 T4C 和 T2C,其催化效率明显高于脯氨酸。停流实验还表明,l-T4C 和 l-T2C 以比脯氨酸更快的速度还原 PutA 结合的 FAD。然而,与脯氨酸不同的是,T4C 和 T2C 的氧化不会产生 NAD 依赖性 GSALDH 的底物。相反,PutA/PRODH 氧化 T4C 导致半胱氨酸形成,而 T2C 的氧化产生一种明显稳定的Δ-噻唑啉-2-羧酸酯。我们的研究结果为 T2C 和 T4C 的代谢提供了新的见解。

相似文献

1
Evidence for Proline Catabolic Enzymes in the Metabolism of Thiazolidine Carboxylates.
Biochemistry. 2021 Nov 30;60(47):3610-3620. doi: 10.1021/acs.biochem.1c00625. Epub 2021 Nov 9.
2
Covalent Modification of the Flavin in Proline Dehydrogenase by Thiazolidine-2-Carboxylate.
ACS Chem Biol. 2020 Apr 17;15(4):936-944. doi: 10.1021/acschembio.9b00935. Epub 2020 Mar 18.
4
Kinetics of human pyrroline-5-carboxylate reductase in L-thioproline metabolism.
Amino Acids. 2021 Dec;53(12):1863-1874. doi: 10.1007/s00726-021-03095-4. Epub 2021 Nov 18.
5
Oxidation of L-thiazolidine-4-carboxylate by L-proline dehydrogenase in Escherichia coli.
J Gen Microbiol. 1992 Aug;138 Pt 8:1593-8. doi: 10.1099/00221287-138-8-1593.
7
Structure, function, and mechanism of proline utilization A (PutA).
Arch Biochem Biophys. 2017 Oct 15;632:142-157. doi: 10.1016/j.abb.2017.07.005. Epub 2017 Jul 14.
8
Probing the function of a ligand-modulated dynamic tunnel in bifunctional proline utilization A (PutA).
Arch Biochem Biophys. 2021 Nov 15;712:109025. doi: 10.1016/j.abb.2021.109025. Epub 2021 Sep 15.
10
Structural Basis for the Substrate Inhibition of Proline Utilization A by Proline.
Molecules. 2017 Dec 23;23(1):32. doi: 10.3390/molecules23010032.

本文引用的文献

1
Proline metabolic dynamics and implications in drought tolerance of peanut plants.
Plant Physiol Biochem. 2020 Jun;151:566-578. doi: 10.1016/j.plaphy.2020.04.010. Epub 2020 Apr 17.
2
Thioproline formation as a driver of formaldehyde toxicity in Escherichia coli.
Biochem J. 2020 May 15;477(9):1745-1757. doi: 10.1042/BCJ20200198.
3
Thioproline Serves as an Efficient Antioxidant Protecting Human Cells from Oxidative Stress and Improves Cell Viability.
Chem Res Toxicol. 2020 Jul 20;33(7):1815-1821. doi: 10.1021/acs.chemrestox.0c00055. Epub 2020 Apr 30.
4
Covalent Modification of the Flavin in Proline Dehydrogenase by Thiazolidine-2-Carboxylate.
ACS Chem Biol. 2020 Apr 17;15(4):936-944. doi: 10.1021/acschembio.9b00935. Epub 2020 Mar 18.
5
Proteomic analysis of thioproline misincorporation in Escherichia coli.
J Proteomics. 2020 Jan 6;210:103541. doi: 10.1016/j.jprot.2019.103541. Epub 2019 Oct 13.
6
Fragments of the Nonlytic Proline-Rich Antimicrobial Peptide Bac5 Kill Escherichia coli Cells by Inhibiting Protein Synthesis.
Antimicrob Agents Chemother. 2018 Jul 27;62(8). doi: 10.1128/AAC.00534-18. Print 2018 Aug.
8
Role of Proline in Pathogen and Host Interactions.
Antioxid Redox Signal. 2019 Feb 1;30(4):683-709. doi: 10.1089/ars.2017.7335. Epub 2018 Feb 2.
9
Structural Biology of Proline Catabolic Enzymes.
Antioxid Redox Signal. 2019 Feb 1;30(4):650-673. doi: 10.1089/ars.2017.7374. Epub 2017 Nov 13.
10
Structure, function, and mechanism of proline utilization A (PutA).
Arch Biochem Biophys. 2017 Oct 15;632:142-157. doi: 10.1016/j.abb.2017.07.005. Epub 2017 Jul 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验