Suppr超能文献

S-杂环化合物光致共价不可逆失活脯氨酸脱氢酶。

Photoinduced Covalent Irreversible Inactivation of Proline Dehydrogenase by S-Heterocycles.

机构信息

Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States.

Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States.

出版信息

ACS Chem Biol. 2021 Nov 19;16(11):2268-2279. doi: 10.1021/acschembio.1c00427. Epub 2021 Sep 20.

Abstract

Proline dehydrogenase (PRODH) is a flavoenzyme that catalyzes the first step of proline catabolism, the oxidation of l-proline to Δ-pyrroline-5-carboxylate. PRODH has emerged as a cancer therapy target because of its involvement in the metabolic reprogramming of cancer cells. Here, we report the discovery of a new class of PRODH inactivator, which covalently and irreversibly modifies the FAD in a light-dependent manner. Two examples, 1,3-dithiolane-2-carboxylate and tetrahydrothiophene-2-carboxylate, have been characterized using X-ray crystallography (1.52-1.85 Å resolution), absorbance spectroscopy, and enzyme kinetics. The structures reveal that in the dark, these compounds function as classical reversible, proline analogue inhibitors. However, exposure of enzyme-inhibitor cocrystals to bright white light induces decarboxylation of the inhibitor and covalent attachment of the residual S-heterocycle to the FAD N5 atom, locking the cofactor into a reduced, inactive state. Spectroscopic measurements of the inactivation process in solution confirm the requirement for light and show that blue light is preferred. Enzyme activity assays show that the rate of inactivation is enhanced by light and that the inactivation is irreversible. We also demonstrate the photosensitivity of cancer cells to one of these compounds. A possible mechanism is proposed involving photoexcitation of the FAD, while the inhibitor is noncovalently bound in the active site, followed by electron transfer, decarboxylation, and radical combination steps. Our results could lead to the development of photopharmacological drugs targeting PRODH.

摘要

脯氨酸脱氢酶(PRODH)是一种黄素酶,可催化脯氨酸分解代谢的第一步,即将 l-脯氨酸氧化为Δ-吡咯啉-5-羧酸。由于 PRODH 参与癌细胞的代谢重编程,因此它已成为癌症治疗的靶标。在这里,我们报告了一种新的 PRODH 失活剂的发现,该失活剂以光依赖性的方式使 FAD 发生共价和不可逆修饰。使用 X 射线晶体学(1.52-1.85Å分辨率)、吸收光谱和酶动力学对两个实例,1,3-二硫杂环戊烷-2-羧酸酯和四氢噻吩-2-羧酸酯进行了表征。结构表明,在黑暗中,这些化合物作为经典的可逆脯氨酸类似物抑制剂起作用。然而,将酶-抑制剂共晶体暴露于明亮的白光下会诱导抑制剂脱羧,并将残留的 S-杂环共价连接到 FAD N5 原子上,从而将辅因子锁定在还原的非活性状态。溶液中失活过程的光谱测量证实了光的要求,并表明蓝光是首选。酶活性测定表明,光增强了失活的速率,并且失活是不可逆的。我们还证明了这些化合物之一对癌细胞的光敏性。提出了一种可能的机制,涉及 FAD 的光激发,而抑制剂在活性部位非共价结合,随后是电子转移、脱羧和自由基结合步骤。我们的结果可能导致针对 PRODH 的光药理学药物的开发。

相似文献

1
Photoinduced Covalent Irreversible Inactivation of Proline Dehydrogenase by S-Heterocycles.
ACS Chem Biol. 2021 Nov 19;16(11):2268-2279. doi: 10.1021/acschembio.1c00427. Epub 2021 Sep 20.
2
Covalent Modification of the Flavin in Proline Dehydrogenase by Thiazolidine-2-Carboxylate.
ACS Chem Biol. 2020 Apr 17;15(4):936-944. doi: 10.1021/acschembio.9b00935. Epub 2020 Mar 18.
8
Structure-based engineering of minimal proline dehydrogenase domains for inhibitor discovery.
Protein Eng Des Sel. 2022 Feb 17;35. doi: 10.1093/protein/gzac016.
9
Structural basis for the inactivation of Thermus thermophilus proline dehydrogenase by N-propargylglycine.
Biochemistry. 2008 May 20;47(20):5573-80. doi: 10.1021/bi800055w. Epub 2008 Apr 22.

引用本文的文献

4
Noncovalent Inhibition and Covalent Inactivation of Proline Dehydrogenase by Analogs of -Propargylglycine.
Biochemistry. 2024 Nov 5;63(21):2855-2867. doi: 10.1021/acs.biochem.4c00429. Epub 2024 Oct 22.
7
Structure-based engineering of minimal proline dehydrogenase domains for inhibitor discovery.
Protein Eng Des Sel. 2022 Feb 17;35. doi: 10.1093/protein/gzac016.

本文引用的文献

1
Photochemical Mechanism of Light-Driven Fatty Acid Photodecarboxylase.
ACS Catal. 2020 Jun 19;10(12):6691-6696. doi: 10.1021/acscatal.0c01684. Epub 2020 May 19.
2
Covalent Modification of the Flavin in Proline Dehydrogenase by Thiazolidine-2-Carboxylate.
ACS Chem Biol. 2020 Apr 17;15(4):936-944. doi: 10.1021/acschembio.9b00935. Epub 2020 Mar 18.
3
4
Cancer progression is mediated by proline catabolism in non-small cell lung cancer.
Oncogene. 2020 Mar;39(11):2358-2376. doi: 10.1038/s41388-019-1151-5. Epub 2020 Jan 7.
6
Hydrocarbon Synthesis via Photoenzymatic Decarboxylation of Carboxylic Acids.
J Am Chem Soc. 2019 Feb 20;141(7):3116-3120. doi: 10.1021/jacs.8b12282. Epub 2019 Feb 6.
7
Flavin oxidation in flavin-dependent N-monooxygenases.
Protein Sci. 2019 Jan;28(1):90-99. doi: 10.1002/pro.3487. Epub 2018 Sep 25.
8
In Vivo Photopharmacology.
Chem Rev. 2018 Nov 14;118(21):10710-10747. doi: 10.1021/acs.chemrev.8b00037. Epub 2018 Jul 9.
9
The Proline Cycle As a Potential Cancer Therapy Target.
Biochemistry. 2018 Jun 26;57(25):3433-3444. doi: 10.1021/acs.biochem.8b00215. Epub 2018 Apr 23.
10
Structural Basis for the Substrate Inhibition of Proline Utilization A by Proline.
Molecules. 2017 Dec 23;23(1):32. doi: 10.3390/molecules23010032.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验