Suppr超能文献

解析脯氨酸生物合成酶人吡咯啉-5-羧酸还原酶1中的辅因子结合位点。

Resolving the cofactor-binding site in the proline biosynthetic enzyme human pyrroline-5-carboxylate reductase 1.

作者信息

Christensen Emily M, Patel Sagar M, Korasick David A, Campbell Ashley C, Krause Kurt L, Becker Donald F, Tanner John J

机构信息

From the Departments of Chemistry and.

the Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, Nebraska 68588.

出版信息

J Biol Chem. 2017 Apr 28;292(17):7233-7243. doi: 10.1074/jbc.M117.780288. Epub 2017 Mar 3.

Abstract

Pyrroline-5-carboxylate reductase (PYCR) is the final enzyme in proline biosynthesis, catalyzing the NAD(P)H-dependent reduction of Δ-pyrroline-5-carboxylate (P5C) to proline. Mutations in the gene alter mitochondrial function and cause the connective tissue disorder cutis laxa. Furthermore, PYCR1 is overexpressed in multiple cancers, and the knock-out suppresses tumorigenic growth, suggesting that PYCR1 is a potential cancer target. However, inhibitor development has been stymied by limited mechanistic details for the enzyme, particularly in light of a previous crystallographic study that placed the cofactor-binding site in the C-terminal domain rather than the anticipated Rossmann fold of the N-terminal domain. To fill this gap, we report crystallographic, sedimentation-velocity, and kinetics data for human PYCR1. Structures of binary complexes of PYCR1 with NADPH or proline determined at 1.9 Å resolution provide insight into cofactor and substrate recognition. We see NADPH bound to the Rossmann fold, over 25 Å from the previously proposed site. The 1.85 Å resolution structure of a ternary complex containing NADPH and a P5C/proline analog provides a model of the Michaelis complex formed during hydride transfer. Sedimentation velocity shows that PYCR1 forms a concentration-dependent decamer in solution, consistent with the pentamer-of-dimers assembly seen crystallographically. Kinetic and mutational analysis confirmed several features seen in the crystal structure, including the importance of a hydrogen bond between Thr-238 and the substrate as well as limited cofactor discrimination.

摘要

吡咯啉 - 5 - 羧酸盐还原酶(PYCR)是脯氨酸生物合成中的最后一种酶,催化依赖NAD(P)H将Δ - 吡咯啉 - 5 - 羧酸盐(P5C)还原为脯氨酸。该基因的突变会改变线粒体功能并导致结缔组织疾病皮肤松弛症。此外,PYCR1在多种癌症中过表达,敲除该基因可抑制肿瘤生长,这表明PYCR1是一个潜在的癌症靶点。然而,由于该酶的作用机制细节有限,抑制剂的开发受到了阻碍,特别是鉴于之前的晶体学研究将辅因子结合位点定位在C末端结构域,而非预期的N末端结构域的Rossmann折叠结构域。为了填补这一空白,我们报告了人PYCR1的晶体学、沉降速度和动力学数据。以1.9 Å分辨率测定的PYCR1与NADPH或脯氨酸的二元复合物结构,为深入了解辅因子和底物识别提供了依据。我们发现NADPH结合在Rossmann折叠结构域上,距离先前提出的位点超过25 Å。含有NADPH和P5C/脯氨酸类似物的三元复合物的1.85 Å分辨率结构,提供了氢化物转移过程中形成的米氏复合物模型。沉降速度表明PYCR1在溶液中形成浓度依赖性的十聚体,这与晶体学观察到的二聚体五聚体组装一致。动力学和突变分析证实了晶体结构中观察到的几个特征,包括苏氨酸 - 238与底物之间氢键的重要性以及有限的辅因子识别能力。

相似文献

1
Resolving the cofactor-binding site in the proline biosynthetic enzyme human pyrroline-5-carboxylate reductase 1.
J Biol Chem. 2017 Apr 28;292(17):7233-7243. doi: 10.1074/jbc.M117.780288. Epub 2017 Mar 3.
3
screening for proline analog inhibitors of the proline cycle enzyme PYCR1.
J Biol Chem. 2020 Dec 25;295(52):18316-18327. doi: 10.1074/jbc.RA120.016106. Epub 2020 Oct 27.
4
Expression and kinetic characterization of PYCR3.
Arch Biochem Biophys. 2023 Jan 1;733:109468. doi: 10.1016/j.abb.2022.109468. Epub 2022 Nov 19.
5
Novel Fragment Inhibitors of PYCR1 from Docking-Guided X-ray Crystallography.
J Chem Inf Model. 2024 Mar 11;64(5):1704-1718. doi: 10.1021/acs.jcim.3c01879. Epub 2024 Feb 27.
6
Functional Impact of a Cancer-Related Variant in Human Δ-Pyrroline-5-Carboxylate Reductase 1.
ACS Omega. 2023 Jan 10;8(3):3509-3519. doi: 10.1021/acsomega.2c07788. eCollection 2023 Jan 24.
8
Disease variants of human Δ-pyrroline-5-carboxylate reductase 2 (PYCR2).
Arch Biochem Biophys. 2021 May 30;703:108852. doi: 10.1016/j.abb.2021.108852. Epub 2021 Mar 24.
9
Crystal structure of human pyrroline-5-carboxylate reductase.
J Mol Biol. 2006 Jun 23;359(5):1364-77. doi: 10.1016/j.jmb.2006.04.053. Epub 2006 May 11.
10
In silico screening, molecular docking, and molecular dynamics studies of SNP-derived human P5CR mutants.
J Biomol Struct Dyn. 2017 Aug;35(11):2441-2453. doi: 10.1080/07391102.2016.1222967. Epub 2016 Sep 27.

引用本文的文献

1
The key enzyme PYCR1 in proline metabolism: a dual driver of cancer progression and fibrotic remodeling.
J Enzyme Inhib Med Chem. 2025 Dec;40(1):2545620. doi: 10.1080/14756366.2025.2545620. Epub 2025 Sep 2.
2
Insights into targeted ferroptosis in mechanisms, biology, and role of Alzheimer's disease: an update.
Front Aging Neurosci. 2025 Jul 21;17:1587986. doi: 10.3389/fnagi.2025.1587986. eCollection 2025.
3
The crosstalk between non-coding RNAs and oxidative stress in cancer progression.
Genes Dis. 2024 Apr 10;12(3):101286. doi: 10.1016/j.gendis.2024.101286. eCollection 2025 May.
5
PYCR1 expresses in cancer-associated fibroblasts and accelerates the progression of C6 glioblastoma.
Histol Histopathol. 2025 Jan;40(1):89-100. doi: 10.14670/HH-18-762. Epub 2024 May 15.
6
PYCR1 regulates TRAIL‑resistance in non‑small cell lung cancer cells by regulating the redistribution of death receptors.
Oncol Lett. 2024 Mar 19;27(5):216. doi: 10.3892/ol.2024.14349. eCollection 2024 May.
7
Novel Fragment Inhibitors of PYCR1 from Docking-Guided X-ray Crystallography.
J Chem Inf Model. 2024 Mar 11;64(5):1704-1718. doi: 10.1021/acs.jcim.3c01879. Epub 2024 Feb 27.

本文引用的文献

3
In silico screening, molecular docking, and molecular dynamics studies of SNP-derived human P5CR mutants.
J Biomol Struct Dyn. 2017 Aug;35(11):2441-2453. doi: 10.1080/07391102.2016.1222967. Epub 2016 Sep 27.
4
A critical examination of the recently reported crystal structures of the human SMN protein.
Hum Mol Genet. 2016 Aug 29;25(21):4717–4725. doi: 10.1093/hmg/ddw298.
5
Tumour-specific proline vulnerability uncovered by differential ribosome codon reading.
Nature. 2016 Feb 25;530(7591):490-4. doi: 10.1038/nature16982. Epub 2016 Feb 15.
6
New Biological Insights from Better Structure Models.
J Mol Biol. 2016 Mar 27;428(6):1375-1393. doi: 10.1016/j.jmb.2016.02.002. Epub 2016 Feb 8.
7
Downregulation of pyrroline-5-carboxylate reductase-2 induces the autophagy of melanoma cells via AMPK/mTOR pathway.
Tumour Biol. 2016 May;37(5):6485-91. doi: 10.1007/s13277-015-3927-8. Epub 2015 Dec 3.
9
Structural genomics for drug design against the pathogen Coxiella burnetii.
Proteins. 2015 Dec;83(12):2124-36. doi: 10.1002/prot.24841. Epub 2015 Oct 6.
10
Mutations in PYCR2, Encoding Pyrroline-5-Carboxylate Reductase 2, Cause Microcephaly and Hypomyelination.
Am J Hum Genet. 2015 May 7;96(5):709-19. doi: 10.1016/j.ajhg.2015.03.003. Epub 2015 Apr 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验