Suppr超能文献

一种系统生物学方法鉴定出一个在脂肪族硫代葡萄糖苷调控中具有不同且重叠功能的R2R3 MYB基因亚家族。

A systems biology approach identifies a R2R3 MYB gene subfamily with distinct and overlapping functions in regulation of aliphatic glucosinolates.

作者信息

Sønderby Ida Elken, Hansen Bjarne Gram, Bjarnholt Nanna, Ticconi Carla, Halkier Barbara Ann, Kliebenstein Daniel J

机构信息

Plant Biochemistry Laboratory, Department of Plant Biology, Center for Molecular Plant Physiology (PlaCe), Faculty of Life Sciences, University of Copenhagen, Copenhagen, Denmark.

出版信息

PLoS One. 2007 Dec 19;2(12):e1322. doi: 10.1371/journal.pone.0001322.

Abstract

BACKGROUND

Glucosinolates are natural metabolites in the order Brassicales that defend plants against both herbivores and pathogens and can attract specialized insects. Knowledge about the genes controlling glucosinolate regulation is limited. Here, we identify three R2R3 MYB transcription factors regulating aliphatic glucosinolate biosynthesis in Arabidopsis by combining several systems biology tools.

METHODOLOGY/PRINCIPAL FINDINGS: MYB28 was identified as a candidate regulator of aliphatic glucosinolates based on its co-localization within a genomic region controlling variation both in aliphatic glucosinolate content (metabolite QTL) and in transcript level for genes involved in the biosynthesis of aliphatic glucosinolates (expression QTL), as well as its co-expression with genes in aliphatic glucosinolate biosynthesis. A phylogenetic analysis with the R2R3 motif of MYB28 showed that it and two homologues, MYB29 and MYB76, were members of an Arabidopsis-specific clade that included three characterized regulators of indole glucosinolates. Over-expression of the individual MYB genes showed that they all had the capacity to increase the production of aliphatic glucosinolates in leaves and seeds and induce gene expression of aliphatic biosynthetic genes within leaves. Analysis of leaves and seeds of single knockout mutants showed that mutants of MYB29 and MYB76 have reductions in only short-chained aliphatic glucosinolates whereas a mutant in MYB28 has reductions in both short- and long-chained aliphatic glucosinolates. Furthermore, analysis of a double knockout in MYB28 and MYB29 identified an emergent property of the system since the absence of aliphatic glucosinolates in these plants could not be predicted by the chemotype of the single knockouts.

CONCLUSIONS/SIGNIFICANCE: It seems that these cruciferous-specific MYB regulatory genes have evolved both overlapping and specific regulatory capacities. This provides a unique system within which to study the evolution of MYB regulatory factors and their downstream targets.

摘要

背景

硫代葡萄糖苷是十字花目植物中的天然代谢产物,可保护植物抵御食草动物和病原体,并能吸引特定昆虫。关于控制硫代葡萄糖苷调控的基因的知识有限。在此,我们通过结合多种系统生物学工具,鉴定出三个调控拟南芥中脂肪族硫代葡萄糖苷生物合成的R2R3 MYB转录因子。

方法/主要发现:基于MYB28在一个控制脂肪族硫代葡萄糖苷含量变异(代谢物QTL)以及脂肪族硫代葡萄糖苷生物合成相关基因转录水平变异(表达QTL)的基因组区域内的共定位,以及它与脂肪族硫代葡萄糖苷生物合成基因的共表达,MYB28被鉴定为脂肪族硫代葡萄糖苷的候选调控因子。对MYB28的R2R3基序进行系统发育分析表明,它与两个同源物MYB29和MYB76属于拟南芥特有的一个分支,该分支包括三个已鉴定的吲哚硫代葡萄糖苷调控因子。单个MYB基因的过表达表明,它们都有能力增加叶片和种子中脂肪族硫代葡萄糖苷的产量,并诱导叶片内脂肪族生物合成基因的表达。对单基因敲除突变体的叶片和种子分析表明,MYB29和MYB76的突变体仅短链脂肪族硫代葡萄糖苷减少,而MYB28的突变体中短链和长链脂肪族硫代葡萄糖苷均减少。此外,对MYB28和MYB29双基因敲除的分析确定了该系统的一个新特性,因为这些植物中脂肪族硫代葡萄糖苷的缺失无法通过单基因敲除的化学型预测。

结论/意义:这些十字花科特有的MYB调控基因似乎已经进化出重叠和特定的调控能力。这提供了一个独特的系统,可用于研究MYB调控因子及其下游靶点的进化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a26b/2147653/c3f486f6e6f1/pone.0001322.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验