Suppr超能文献

从染色质免疫沉淀和稳态微阵列数据中恢复基因调控网络。

Recovering genetic regulatory networks from chromatin immunoprecipitation and steady-state microarray data.

作者信息

Zhao Wentao, Serpedin Erchin, Dougherty Edward R

机构信息

Electrical and Computer Engineering Department, Texas A&M University, College Station, TX 77843, USA.

出版信息

EURASIP J Bioinform Syst Biol. 2008;2008(1):248747. doi: 10.1155/2008/248747.

Abstract

Recent advances in high-throughput DNA microarrays and chromatin immunoprecipitation (ChIP) assays have enabled the learning of the structure and functionality of genetic regulatory networks. In light of these heterogeneous data sets, this paper proposes a novel approach for reconstruction of genetic regulatory networks based on the posterior probabilities of gene regulations. Built within the framework of Bayesian statistics and computational Monte Carlo techniques, the proposed approach prevents the dichotomy of classifying gene interactions as either being connected or disconnected, thereby it reduces significantly the inference errors. Simulation results corroborate the superior performance of the proposed approach relative to the existing state-of-the-art algorithms. A genetic regulatory network for Saccharomyces cerevisiae is inferred based on the published real data sets, and biological meaningful results are discussed.

摘要

高通量DNA微阵列和染色质免疫沉淀(ChIP)分析技术的最新进展,使得人们能够了解遗传调控网络的结构和功能。鉴于这些异构数据集,本文提出了一种基于基因调控后验概率重建遗传调控网络的新方法。该方法构建于贝叶斯统计和计算蒙特卡罗技术框架内,避免了将基因相互作用简单分类为连接或不连接的二分法,从而显著减少了推理误差。仿真结果证实了该方法相对于现有最先进算法的优越性能。基于已发表的真实数据集推断了酿酒酵母的遗传调控网络,并讨论了具有生物学意义的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1b2/3171391/0c95711607f3/1687-4153-2008-248747-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验