School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
Curr Protein Pept Sci. 2011 Nov;12(7):631-42. doi: 10.2174/1389203711109070631.
Inferring transcriptional regulatory networks from high-throughput biological data is a major challenge to bioinformatics today. To address this challenge, we developed TReNGO (Transcriptional Regulatory Networks reconstruction based on Global Optimization), a global and threshold-free algorithm with simulated annealing for inferring regulatory networks by the integration of ChIP-chip and expression data. Superior to existing methods, TReNGO was expected to find the optimal structure of transcriptional regulatory networks without any arbitrary thresholds or predetermined number of transcriptional modules (TMs). TReNGO was applied to both synthetic data and real yeast data in the rapamycin response. In these applications, we demonstrated an improved functional coherence of TMs and TF (transcription factor)- target predictions by TReNGO when compared to GRAM, COGRIM or to analyzing ChIP-chip data alone. We also demonstrated the ability of TReNGO to discover unexpected biological processes that TFs may be involved in and to also identify interesting novel combinations of TFs.
从高通量生物数据中推断转录调控网络是当今生物信息学面临的主要挑战。为了应对这一挑战,我们开发了 TReNGO(基于全局优化的转录调控网络重建),这是一种全局且无阈值的算法,具有模拟退火功能,可通过整合 ChIP-chip 和表达数据来推断调控网络。与现有方法相比,TReNGO 有望在没有任何任意阈值或预定转录模块 (TM) 数量的情况下找到转录调控网络的最佳结构。TReNGO 应用于雷帕霉素反应的合成数据和真实酵母数据。在这些应用中,与 GRAM、COGRIM 或单独分析 ChIP-chip 数据相比,TReNGO 对 TM 和 TF(转录因子)-靶标预测的功能一致性有了显著提高。我们还证明了 TReNGO 发现 TF 可能参与的意外生物过程的能力,以及识别有趣的新型 TF 组合的能力。