Suppr超能文献

烟酰胺腺嘌呤二核苷酸(NAD+)激活背根神经节神经元中的钾钠通道。

NAD+ activates KNa channels in dorsal root ganglion neurons.

作者信息

Tamsett Thomas J, Picchione Kelly E, Bhattacharjee Arin

机构信息

Program in Neuroscience, The State University of New York at Buffalo, Buffalo, New York 14214, USA.

出版信息

J Neurosci. 2009 Apr 22;29(16):5127-34. doi: 10.1523/JNEUROSCI.0859-09.2009.

Abstract

Although sodium-activated potassium channels (KNa) have been suggested to shape various firing patterns in neurons, including action potential repolarization, their requirement for high concentrations of Na+ to gate conflicts with this view. We characterized KNa channels in adult rat dorsal root ganglion (DRG) neurons. Using immunohistochemistry, we found ubiquitous expression of the Slack KNa channel subunit in small-, medium-, and large-diameter DRG neurons. Basal KNa channel activity could be recorded from cell-attached patches of acutely dissociated neurons bathed in physiological saline, and yet in excised inside-out membrane patches, the Na+ EC50 for KNa channels was typically high, approximately 50 mM. In some cases, however, KNa channel activity remained considerable after initial patch excision but decreased rapidly over time. Channel activity was restored in patches with high Na+. The channel rundown after initial excision suggested that modulation of channels might be occurring through a diffusible cytoplasmic factor. Sequence analysis indicated that the Slack channel contains a putative nicotinamide adenine dinucleotide (NAD+)-binding site; accordingly, we examined the modulation of native KNa and Slack channels by NAD+. In inside-out-excised neuronal patch recordings, we found a decrease in the Na+ EC50 for KNa channels from approximately 50 to approximately 20 mM when NAD+ was included in the perfusate. NAD+ also potentiated recombinant Slack channel activity. NAD+ modulation may allow KNa channels to operate under physiologically relevant levels of intracellular Na+ and hence provides an explanation as to how KNa channel can control normal neuronal excitability.

摘要

尽管有人提出钠激活钾通道(KNa)可塑造神经元中的各种放电模式,包括动作电位复极化,但其开启需要高浓度Na+这一特性与该观点相矛盾。我们对成年大鼠背根神经节(DRG)神经元中的KNa通道进行了表征。通过免疫组织化学,我们发现Slack KNa通道亚基在小直径、中直径和大直径DRG神经元中普遍表达。基础KNa通道活性可在浸浴于生理盐水中的急性解离神经元的细胞贴附膜片上记录到,然而在切除的内向外膜片中,KNa通道的Na+半数有效浓度(EC50)通常较高,约为50 mM。然而,在某些情况下,初始膜片切除后KNa通道活性仍相当可观,但会随时间迅速下降。高Na+膜片中通道活性得以恢复。初始切除后通道功能衰退表明通道调节可能通过一种可扩散的细胞质因子发生。序列分析表明,Slack通道包含一个假定的烟酰胺腺嘌呤二核苷酸(NAD+)结合位点;因此,我们研究了NAD+对天然KNa通道和Slack通道的调节作用。在内向外切除的神经元膜片记录中,我们发现当灌流液中加入NAD+时,KNa通道的Na+ EC50从约50 mM降至约20 mM。NAD+还增强了重组Slack通道的活性。NAD+调节可能使KNa通道在细胞内Na+的生理相关水平下发挥作用,从而解释了KNa通道如何控制正常神经元兴奋性。

相似文献

1
NAD+ activates KNa channels in dorsal root ganglion neurons.
J Neurosci. 2009 Apr 22;29(16):5127-34. doi: 10.1523/JNEUROSCI.0859-09.2009.
4
Sodium sensitivity of K channels in mouse CA1 neurons.
J Neurophysiol. 2021 May 1;125(5):1690-1697. doi: 10.1152/jn.00064.2021. Epub 2021 Mar 31.
5
PKA-induced internalization of slack KNa channels produces dorsal root ganglion neuron hyperexcitability.
J Neurosci. 2010 Oct 20;30(42):14165-72. doi: 10.1523/JNEUROSCI.3150-10.2010.
6
Magi-1 scaffolds Na1.8 and Slack K channels in dorsal root ganglion neurons regulating excitability and pain.
FASEB J. 2019 Jun;33(6):7315-7330. doi: 10.1096/fj.201802454RR. Epub 2019 Mar 12.
7
Na+-activated K+ channels in small dorsal root ganglion neurones of rat.
J Physiol. 1998 Aug 1;510 ( Pt 3)(Pt 3):743-54. doi: 10.1111/j.1469-7793.1998.743bj.x.
8
The antipsychotic drug loxapine is an opener of the sodium-activated potassium channel slack (Slo2.2).
J Pharmacol Exp Ther. 2012 Mar;340(3):706-15. doi: 10.1124/jpet.111.184622. Epub 2011 Dec 13.
10
Slack sodium-activated potassium channel membrane expression requires p38 mitogen-activated protein kinase phosphorylation.
Neuropharmacology. 2016 Apr;103:279-89. doi: 10.1016/j.neuropharm.2015.12.016. Epub 2015 Dec 22.

引用本文的文献

2
Redox state of NAD modulates the activation of Na-bicarbonate cotransporter NBCe1-B via IRBIT and L-IRBIT.
Sci China Life Sci. 2025 May;68(5):1452-1462. doi: 10.1007/s11427-024-2750-0. Epub 2025 Feb 20.
3
Structural basis and synergism of ATP and Na activation in bacterial K uptake system KtrAB.
Nat Commun. 2024 May 8;15(1):3850. doi: 10.1038/s41467-024-48057-y.
4
[Not Available].
Andrology. 2025 Feb;13(2):184-201. doi: 10.1111/andr.13606. Epub 2024 Mar 4.
6
Inflammation-induced mitochondrial and metabolic disturbances in sensory neurons control the switch from acute to chronic pain.
Cell Rep Med. 2023 Nov 21;4(11):101265. doi: 10.1016/j.xcrm.2023.101265. Epub 2023 Nov 8.
7
Therapeutic Drug Monitoring of Quinidine in Pediatric Patients with Genetic Variants.
Pharmaceutics. 2022 Oct 19;14(10):2230. doi: 10.3390/pharmaceutics14102230.
8
The Slack Channel Deletion Causes Mechanical Pain Hypersensitivity in Mice.
Front Mol Neurosci. 2022 Mar 11;15:811441. doi: 10.3389/fnmol.2022.811441. eCollection 2022.
10
Double-edged Role of K Channels in Brain Tuning: Identifying Epileptogenic Network Micro-Macro Disconnection.
Curr Neuropharmacol. 2022;20(5):916-928. doi: 10.2174/1570159X19666211215104829.

本文引用的文献

2
Protective effects of 4-amino1,8-napthalimide, a poly (ADP-ribose) polymerase inhibitor in experimental diabetic neuropathy.
Life Sci. 2008 Mar 12;82(11-12):570-6. doi: 10.1016/j.lfs.2007.11.031. Epub 2007 Dec 26.
5
NAD+ and NADH in neuronal death.
J Neuroimmune Pharmacol. 2007 Sep;2(3):270-5. doi: 10.1007/s11481-007-9063-5. Epub 2007 Feb 10.
6
Nutrient-sensitive mitochondrial NAD+ levels dictate cell survival.
Cell. 2007 Sep 21;130(6):1095-107. doi: 10.1016/j.cell.2007.07.035.
7
Pyridine nucleotide redox abnormalities in diabetes.
Antioxid Redox Signal. 2007 Jul;9(7):931-42. doi: 10.1089/ars.2007.1630.
8
High-conductance potassium channels of the SLO family.
Nat Rev Neurosci. 2006 Dec;7(12):921-31. doi: 10.1038/nrn1992.
9
Stimulation of nicotinamide adenine dinucleotide biosynthetic pathways delays axonal degeneration after axotomy.
J Neurosci. 2006 Aug 16;26(33):8484-91. doi: 10.1523/JNEUROSCI.2320-06.2006.
10
Pharmacological activation and inhibition of Slack (Slo2.2) channels.
Neuropharmacology. 2006 Sep;51(4):896-906. doi: 10.1016/j.neuropharm.2006.06.003. Epub 2006 Jul 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验