Daubechies I, Roussos E, Takerkart S, Benharrosh M, Golden C, D'Ardenne K, Richter W, Cohen J D, Haxby J
Center for the Study of Brain, Mind and Behavior, Princeton University, Princeton, NJ 08544, USA.
Proc Natl Acad Sci U S A. 2009 Jun 30;106(26):10415-22. doi: 10.1073/pnas.0903525106. Epub 2009 Jun 25.
InfoMax and FastICA are the independent component analysis algorithms most used and apparently most effective for brain fMRI. We show that this is linked to their ability to handle effectively sparse components rather than independent components as such. The mathematical design of better analysis tools for brain fMRI should thus emphasize other mathematical characteristics than independence.
信息最大化算法(InfoMax)和快速独立成分分析算法(FastICA)是脑功能磁共振成像(fMRI)中最常用且显然最有效的独立成分分析算法。我们表明,这与它们有效处理稀疏成分而非独立成分本身的能力有关。因此,用于脑fMRI的更好分析工具的数学设计应强调除独立性之外的其他数学特征。