Environmental Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Korea.
Physiol Plant. 2010 Apr;138(4):520-33. doi: 10.1111/j.1399-3054.2010.01348.x. Epub 2010 Jan 5.
Plants synthesize compatible solutes such as glycinebetaine (GB) in response to abiotic stresses. To evaluate the synergistic and protective effect of GB, transgenic potato plants expressing superoxide dismutase (SOD) and ascorbate peroxidase (APX) targeting to chloroplasts (referred to as SSA plants) were retransformed with a bacterial choline oxidase (codA) gene to synthesize GB in chloroplast in naturally occurring non-accumulator potato plants (including SSA) under the control of the stress-inducible SWPA2 promoter (referred to as SSAC plants). GB accumulation resulted in enhanced protection of these SSAC plants and lower levels of H(2)O(2) compared with SSA and non-transgenic (NT) plants after methyl viologen (MV)-mediated oxidative stress. Additionally, SSAC plants demonstrated synergistically enhanced tolerance to salt and drought stresses at the whole-plant level. GB accumulation in SSAC plants helped to maintain higher activities of SOD, APX and catalase following oxidative, salt and drought stress treatments than is observed in SSA and NT plants. Conclusively, GB accumulation in SSAC plants along with overexpression of antioxidant genes rendered the plants tolerant to multiple environmental stresses in a synergistic fashion.
植物会合成相容性溶质(如甘氨酸甜菜碱,GB)来应对非生物胁迫。为了评估 GB 的协同和保护作用,将超氧化物歧化酶(SOD)和抗坏血酸过氧化物酶(APX)靶向叶绿体的转基因马铃薯植株(称为 SSA 植株),用细菌胆碱氧化酶(codA)基因进行再转化,在自然发生的非积累马铃薯植株(包括 SSA)中合成 GB,由应激诱导的 SWPA2 启动子(称为 SSAC 植株)控制。与 SSA 和非转基因(NT)植株相比,在甲基紫精(MV)介导的氧化胁迫后,GB 积累导致这些 SSAC 植株的保护作用增强,H2O2 水平降低。此外,SSAC 植株在整个植株水平上表现出协同增强的耐盐和耐旱性。与 SSA 和 NT 植株相比,GB 积累有助于 SSAC 植株在氧化、盐和干旱胁迫处理后维持更高的 SOD、APX 和过氧化氢酶活性。总之,GB 在 SSAC 植株中的积累以及抗氧化基因的过表达使植物以协同的方式耐受多种环境胁迫。