Suppr超能文献

ESCRT-II 协调 ESCRT-III 丝的组装,用于货物分拣和多泡体囊泡的形成。

ESCRT-II coordinates the assembly of ESCRT-III filaments for cargo sorting and multivesicular body vesicle formation.

机构信息

Biocenter, Medical University Innsbruck, Austria.

出版信息

EMBO J. 2010 Mar 3;29(5):871-83. doi: 10.1038/emboj.2009.408. Epub 2010 Feb 4.

Abstract

The sequential action of five distinct endosomal-sorting complex required for transport (ESCRT) complexes is required for the lysosomal downregulation of cell surface receptors through the multivesicular body (MVB) pathway. On endosomes, the assembly of ESCRT-III is a highly ordered process. We show that the length of ESCRT-III (Snf7) oligomers controls the size of MVB vesicles and addresses how ESCRT-II regulates ESCRT-III assembly. The first step of ESCRT-III assembly is mediated by Vps20, which nucleates Snf7/Vps32 oligomerization, and serves as the link to ESCRT-II. The ESCRT-II subunit Vps25 induces an essential conformational switch that converts inactive monomeric Vps20 into the active nucleator for Snf7 oligomerization. Each ESCRT-II complex contains two Vps25 molecules (arms) that generate a characteristic Y-shaped structure. Mutant 'one-armed' ESCRT-II complexes with a single Vps25 arm are sufficient to nucleate Snf7 oligomerization. However, these oligomers cannot execute ESCRT-III function. Both Vps25 arms provide essential geometry for the assembly of a functional ESCRT-III complex. We propose that ESCRT-II serves as a scaffold that nucleates the assembly of two Snf7 oligomers, which together are required for cargo sequestration and vesicle formation during MVB sorting.

摘要

五个不同的内体分选复合物所需的运输(ESCRT)复合物的连续作用是通过多泡体(MVB)途径使细胞表面受体在溶酶体下调所必需的。在内体上,ESCRT-III 的组装是一个高度有序的过程。我们表明,ESCRT-III(Snf7)寡聚物的长度控制 MVB 囊泡的大小,并解决了 ESCRT-II 如何调节 ESCRT-III 组装的问题。ESCRT-III 组装的第一步由 Vps20 介导,它引发 Snf7/Vps32 寡聚化,并作为与 ESCRT-II 的连接。ESCRT-II 亚基 Vps25 诱导必需的构象转换,将无活性的单体 Vps20 转化为 Snf7 寡聚化的活性核酶。每个 ESCRT-II 复合物包含两个 Vps25 分子(臂),它们产生特征性的 Y 形结构。具有单个 Vps25 臂的突变“单臂”ESCRT-II 复合物足以引发 Snf7 寡聚化。然而,这些寡聚物不能执行 ESCRT-III 功能。Vps25 的两个臂都为功能性 ESCRT-III 复合物的组装提供了必需的几何形状。我们提出 ESCRT-II 作为核酶引发两个 Snf7 寡聚体组装的支架,这两个寡聚体一起在 MVB 分拣过程中需要货物隔离和囊泡形成。

相似文献

1
ESCRT-II coordinates the assembly of ESCRT-III filaments for cargo sorting and multivesicular body vesicle formation.
EMBO J. 2010 Mar 3;29(5):871-83. doi: 10.1038/emboj.2009.408. Epub 2010 Feb 4.
3
4
Coordinated binding of Vps4 to ESCRT-III drives membrane neck constriction during MVB vesicle formation.
J Cell Biol. 2014 Apr 14;205(1):33-49. doi: 10.1083/jcb.201310114. Epub 2014 Apr 7.
5
Interaction maps of the Saccharomyces cerevisiae ESCRT-III protein Snf7.
Eukaryot Cell. 2013 Nov;12(11):1538-46. doi: 10.1128/EC.00241-13. Epub 2013 Sep 20.
7
Escrt-III: an endosome-associated heterooligomeric protein complex required for mvb sorting.
Dev Cell. 2002 Aug;3(2):271-82. doi: 10.1016/s1534-5807(02)00220-4.
8
Membrane scission by the ESCRT-III complex.
Nature. 2009 Mar 12;458(7235):172-7. doi: 10.1038/nature07836. Epub 2009 Feb 22.
9
Structure and function of the ESCRT-II-III interface in multivesicular body biogenesis.
Dev Cell. 2009 Aug;17(2):234-43. doi: 10.1016/j.devcel.2009.07.008.
10
Efficient cargo sorting by ESCRT-I and the subsequent release of ESCRT-I from multivesicular bodies requires the subunit Mvb12.
Mol Biol Cell. 2007 Feb;18(2):636-45. doi: 10.1091/mbc.e06-07-0588. Epub 2006 Nov 29.

引用本文的文献

1
Extracellular vesicles: biogenesis mechanism and impacts on tumor immune microenvironment.
J Biomed Sci. 2025 Sep 4;32(1):85. doi: 10.1186/s12929-025-01182-2.
2
The expanding repertoire of ESCRT functions in cell biology and disease.
Nature. 2025 Jun 25. doi: 10.1038/s41586-025-08950-y.
3
The green ESCRTs: Newly defined roles for ESCRT proteins in plants.
J Biol Chem. 2025 Mar 27;301(5):108465. doi: 10.1016/j.jbc.2025.108465.
5
Nuclear and degradative functions of the ESCRT-III pathway: implications for neurodegenerative disease.
Nucleus. 2024 Dec;15(1):2349085. doi: 10.1080/19491034.2024.2349085. Epub 2024 May 3.
6
Endosomal Arl4A attenuates EGFR degradation by binding to the ESCRT-II component VPS36.
Nat Commun. 2023 Nov 29;14(1):7859. doi: 10.1038/s41467-023-42979-9.
7
Insights into the function of ESCRT and its role in enveloped virus infection.
Front Microbiol. 2023 Oct 6;14:1261651. doi: 10.3389/fmicb.2023.1261651. eCollection 2023.
8
Vps60 initiates alternative ESCRT-III filaments.
J Cell Biol. 2023 Nov 6;222(11). doi: 10.1083/jcb.202206028. Epub 2023 Sep 28.
9
Accessory ESCRT-III proteins are conserved and selective regulators of Rab11a-exosome formation.
J Extracell Vesicles. 2023 Mar;12(3):e12311. doi: 10.1002/jev2.12311.
10
Stepwise remodeling and subcompartment formation in individual vesicles by three ESCRT-III proteins.
iScience. 2022 Dec 8;26(1):105765. doi: 10.1016/j.isci.2022.105765. eCollection 2023 Jan 20.

本文引用的文献

1
Structure and function of the ESCRT-II-III interface in multivesicular body biogenesis.
Dev Cell. 2009 Aug;17(2):234-43. doi: 10.1016/j.devcel.2009.07.008.
2
Structural basis for ESCRT-III protein autoinhibition.
Nat Struct Mol Biol. 2009 Jul;16(7):754-62. doi: 10.1038/nsmb.1621. Epub 2009 Jun 14.
3
The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins.
Nature. 2009 Mar 26;458(7237):445-52. doi: 10.1038/nature07961.
4
Membrane scission by the ESCRT-III complex.
Nature. 2009 Mar 12;458(7235):172-7. doi: 10.1038/nature07836. Epub 2009 Feb 22.
5
ESCRTs and human disease.
Biochem Soc Trans. 2009 Feb;37(Pt 1):167-72. doi: 10.1042/BST0370167.
6
Functional reconstitution of ESCRT-III assembly and disassembly.
Cell. 2009 Jan 9;136(1):97-109. doi: 10.1016/j.cell.2008.11.013.
7
Arrestin-related ubiquitin-ligase adaptors regulate endocytosis and protein turnover at the cell surface.
Cell. 2008 Nov 14;135(4):714-25. doi: 10.1016/j.cell.2008.09.025. Epub 2008 Oct 30.
9
Structure and disassembly of filaments formed by the ESCRT-III subunit Vps24.
Structure. 2008 Sep 10;16(9):1345-56. doi: 10.1016/j.str.2008.06.010.
10
Helical structures of ESCRT-III are disassembled by VPS4.
Science. 2008 Sep 5;321(5894):1354-7. doi: 10.1126/science.1161070. Epub 2008 Aug 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验