Suppr超能文献

严重的氧化应激通过损害氨酰-tRNA 合成酶编辑位点诱导蛋白质翻译错误。

Severe oxidative stress induces protein mistranslation through impairment of an aminoacyl-tRNA synthetase editing site.

机构信息

Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA.

出版信息

Proc Natl Acad Sci U S A. 2010 Mar 2;107(9):4028-33. doi: 10.1073/pnas.1000315107. Epub 2010 Feb 16.

Abstract

Oxidative stress arises from excessive reactive oxygen species (ROS) and affects organisms of all three domains of life. Here we present a previously unknown pathway through which ROS may impact faithful protein synthesis. Aminoacyl-tRNA synthetases are key enzymes in the translation of the genetic code; they attach the correct amino acid to each tRNA species and hydrolyze an incorrectly attached amino acid in a process called editing. We show both in vitro and in vivo in Escherichia coli that ROS reduced the overall translational fidelity by impairing the editing activity of threonyl-tRNA synthetase. Hydrogen peroxide oxidized cysteine182 residue critical for editing, leading to Ser-tRNA(Thr) formation and protein mistranslation that impaired growth of Escherichia coli. The presence of major heat shock proteases was required to allow cell growth in medium containing serine and hydrogen peroxide; this suggests that the mistranslated proteins were misfolded.

摘要

氧化应激是由过量的活性氧(ROS)引起的,影响所有三个生命领域的生物体。在这里,我们提出了一条以前未知的途径,通过这条途径,ROS 可能会影响蛋白质合成的忠实性。氨酰-tRNA 合成酶是翻译遗传密码的关键酶;它们将正确的氨基酸连接到每种 tRNA 上,并在称为编辑的过程中水解错误连接的氨基酸。我们在体外和体内的大肠杆菌中都表明,ROS 通过削弱苏氨酰-tRNA 合成酶的编辑活性来降低整体翻译保真度。过氧化氢氧化半胱氨酸 182 残基对于编辑至关重要,导致 Ser-tRNA(Thr)形成和蛋白质错译,从而损害大肠杆菌的生长。在含有丝氨酸和过氧化氢的培养基中,需要存在主要的热休克蛋白酶才能允许细胞生长;这表明错误翻译的蛋白质是错误折叠的。

相似文献

1
Severe oxidative stress induces protein mistranslation through impairment of an aminoacyl-tRNA synthetase editing site.
Proc Natl Acad Sci U S A. 2010 Mar 2;107(9):4028-33. doi: 10.1073/pnas.1000315107. Epub 2010 Feb 16.
2
Homologous trans-editing factors with broad tRNA specificity prevent mistranslation caused by serine/threonine misactivation.
Proc Natl Acad Sci U S A. 2015 May 12;112(19):6027-32. doi: 10.1073/pnas.1423664112. Epub 2015 Apr 27.
3
Ancestral AlaX editing enzymes for control of genetic code fidelity are not tRNA-specific.
J Biol Chem. 2015 Apr 17;290(16):10495-503. doi: 10.1074/jbc.M115.640060. Epub 2015 Feb 27.
4
Hydrolytic editing by a class II aminoacyl-tRNA synthetase.
Proc Natl Acad Sci U S A. 2000 Aug 1;97(16):8916-20. doi: 10.1073/pnas.97.16.8916.
6
Interplay between mistranslation and oxidative stress in .
Arh Hig Rada Toksikol. 2024 Jun 29;75(2):147-154. doi: 10.2478/aiht-2024-75-3834. eCollection 2024 Jun 1.
7
Mechanism of oxidant-induced mistranslation by threonyl-tRNA synthetase.
Nucleic Acids Res. 2014 Jun;42(10):6523-31. doi: 10.1093/nar/gku271. Epub 2014 Apr 17.
8
Domain-domain communication in aminoacyl-tRNA synthetases.
Prog Nucleic Acid Res Mol Biol. 2001;69:317-49. doi: 10.1016/s0079-6603(01)69050-0.

引用本文的文献

1
Ribosome deficiency induces filamentation within host cells.
mBio. 2025 Jun 30:e0141725. doi: 10.1128/mbio.01417-25.
2
3
A metal ion mediated functional dichotomy encodes plasticity during translation quality control.
Nat Commun. 2025 Apr 16;16(1):3625. doi: 10.1038/s41467-025-58787-2.
5
From dusty shelves toward the spotlight: growing evidence for Ap4A as an alarmone in maintaining RNA stability and proteostasis.
Curr Opin Microbiol. 2024 Oct;81:102536. doi: 10.1016/j.mib.2024.102536. Epub 2024 Aug 30.
6
The role of tRNA identity elements in aminoacyl-tRNA editing.
Front Microbiol. 2024 Jul 18;15:1437528. doi: 10.3389/fmicb.2024.1437528. eCollection 2024.
7
Dynamics of diversified A-to-I editing in Streptococcus pyogenes is governed by changes in mRNA stability.
Nucleic Acids Res. 2024 Oct 14;52(18):11234-11253. doi: 10.1093/nar/gkae629.
8
Interplay between mistranslation and oxidative stress in .
Arh Hig Rada Toksikol. 2024 Jun 29;75(2):147-154. doi: 10.2478/aiht-2024-75-3834. eCollection 2024 Jun 1.
9
Translational response to mitochondrial stresses is orchestrated by tRNA modifications.
bioRxiv. 2024 Feb 14:2024.02.14.580389. doi: 10.1101/2024.02.14.580389.
10
Ageing-dependent thiol oxidation reveals early oxidation of proteins with core proteostasis functions.
Life Sci Alliance. 2024 Feb 21;7(5). doi: 10.26508/lsa.202302300. Print 2024 May.

本文引用的文献

1
Innate immune and chemically triggered oxidative stress modifies translational fidelity.
Nature. 2009 Nov 26;462(7272):522-6. doi: 10.1038/nature08576.
3
Aminoacyl-tRNA synthesis and translational quality control.
Annu Rev Microbiol. 2009;63:61-78. doi: 10.1146/annurev.micro.091208.073210.
4
Bleach activates a redox-regulated chaperone by oxidative protein unfolding.
Cell. 2008 Nov 14;135(4):691-701. doi: 10.1016/j.cell.2008.09.024.
5
Quality control despite mistranslation caused by an ambiguous genetic code.
Proc Natl Acad Sci U S A. 2008 Oct 28;105(43):16502-7. doi: 10.1073/pnas.0809179105. Epub 2008 Oct 22.
6
Discovering mechanisms of signaling-mediated cysteine oxidation.
Curr Opin Chem Biol. 2008 Feb;12(1):18-24. doi: 10.1016/j.cbpa.2008.01.021. Epub 2008 Mar 7.
7
Adapting proteostasis for disease intervention.
Science. 2008 Feb 15;319(5865):916-9. doi: 10.1126/science.1141448.
8
Methods for kinetic and thermodynamic analysis of aminoacyl-tRNA synthetases.
Methods. 2008 Feb;44(2):100-18. doi: 10.1016/j.ymeth.2007.09.007.
9
Evidence that tRNA synthetase-directed proton transfer stops mistranslation.
Biochemistry. 2007 Oct 30;46(43):12062-70. doi: 10.1021/bi7007454. Epub 2007 Oct 9.
10
Amino acid toxicities of Escherichia coli that are prevented by leucyl-tRNA synthetase amino acid editing.
J Bacteriol. 2007 Dec;189(23):8765-8. doi: 10.1128/JB.01215-07. Epub 2007 Sep 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验