Aon M A, Cortassa S, O'Rourke B
The Johns Hopkins University, School of Medicine, Institute of Molecular Cardiobiology, Baltimore, MD 21205-2195, USA.
Biochim Biophys Acta. 2010 Jun-Jul;1797(6-7):865-77. doi: 10.1016/j.bbabio.2010.02.016. Epub 2010 Feb 20.
While it is generally accepted that mitochondrial reactive oxygen species (ROS) balance depends on the both rate of single electron reduction of O2 to superoxide (O2.-) by the electron transport chain and the rate of scavenging by intracellular antioxidant pathways, considerable controversy exists regarding the conditions leading to oxidative stress in intact cells versus isolated mitochondria. Here, we postulate that mitochondria have been evolutionarily optimized to maximize energy output while keeping ROS overflow to a minimum by operating in an intermediate redox state. We show that at the extremes of reduction or oxidation of the redox couples involved in electron transport (NADH/NAD+) or ROS scavenging (NADPH/NADP+, GSH/GSSG), respectively, ROS balance is lost. This results in a net overflow of ROS that increases as one moves farther away from the optimal redox potential. At more reduced mitochondrial redox potentials, ROS production exceeds scavenging, while under more oxidizing conditions (e.g., at higher workloads) antioxidant defenses can be compromised and eventually overwhelmed. Experimental support for this hypothesis is provided in both cardiomyocytes and in isolated mitochondria from guinea pig hearts. The model reconciles, within a single framework, observations that isolated mitochondria tend to display increased oxidative stress at high reduction potentials (and high mitochondrial membrane potential, Psim), whereas intact cardiac cells can display oxidative stress either when mitochondria become more uncoupled (i.e., low Psim) or when mitochondria are maximally reduced (as in ischemia or hypoxia). The continuum described by the model has the potential to account for many disparate experimental observations and also provides a rationale for graded physiological ROS signaling at redox potentials near the minimum.
虽然人们普遍认为线粒体活性氧(ROS)平衡取决于电子传递链将O2单电子还原为超氧化物(O2.-)的速率以及细胞内抗氧化途径的清除速率,但关于完整细胞与分离线粒体中导致氧化应激的条件仍存在相当大的争议。在这里,我们假设线粒体在进化过程中经过优化,通过在中间氧化还原状态下运行,在将ROS溢出保持在最低水平的同时最大化能量输出。我们表明,分别在参与电子传递(NADH/NAD+)或ROS清除(NADPH/NADP+,GSH/GSSG)的氧化还原对的还原或氧化极端情况下,ROS平衡会丧失。这导致ROS的净溢出,随着远离最佳氧化还原电位,ROS溢出会增加。在线粒体氧化还原电位更低的情况下,ROS产生超过清除,而在更氧化的条件下(例如,在更高的工作负荷下),抗氧化防御可能会受到损害并最终不堪重负。豚鼠心脏的心肌细胞和分离线粒体均为这一假设提供了实验支持。该模型在一个单一框架内协调了以下观察结果:分离的线粒体在高还原电位(和高线粒体膜电位,Psim)下往往表现出增加的氧化应激,而完整的心脏细胞在线粒体变得更解偶联(即低Psim)或线粒体最大程度还原(如在缺血或缺氧时)时都可能表现出氧化应激。该模型所描述的连续体有可能解释许多不同的实验观察结果,也为在接近最小值的氧化还原电位下分级生理ROS信号传导提供了理论依据。