Suppr超能文献

氧化还原优化的活性氧平衡:一个统一的假说。

Redox-optimized ROS balance: a unifying hypothesis.

作者信息

Aon M A, Cortassa S, O'Rourke B

机构信息

The Johns Hopkins University, School of Medicine, Institute of Molecular Cardiobiology, Baltimore, MD 21205-2195, USA.

出版信息

Biochim Biophys Acta. 2010 Jun-Jul;1797(6-7):865-77. doi: 10.1016/j.bbabio.2010.02.016. Epub 2010 Feb 20.

Abstract

While it is generally accepted that mitochondrial reactive oxygen species (ROS) balance depends on the both rate of single electron reduction of O2 to superoxide (O2.-) by the electron transport chain and the rate of scavenging by intracellular antioxidant pathways, considerable controversy exists regarding the conditions leading to oxidative stress in intact cells versus isolated mitochondria. Here, we postulate that mitochondria have been evolutionarily optimized to maximize energy output while keeping ROS overflow to a minimum by operating in an intermediate redox state. We show that at the extremes of reduction or oxidation of the redox couples involved in electron transport (NADH/NAD+) or ROS scavenging (NADPH/NADP+, GSH/GSSG), respectively, ROS balance is lost. This results in a net overflow of ROS that increases as one moves farther away from the optimal redox potential. At more reduced mitochondrial redox potentials, ROS production exceeds scavenging, while under more oxidizing conditions (e.g., at higher workloads) antioxidant defenses can be compromised and eventually overwhelmed. Experimental support for this hypothesis is provided in both cardiomyocytes and in isolated mitochondria from guinea pig hearts. The model reconciles, within a single framework, observations that isolated mitochondria tend to display increased oxidative stress at high reduction potentials (and high mitochondrial membrane potential, Psim), whereas intact cardiac cells can display oxidative stress either when mitochondria become more uncoupled (i.e., low Psim) or when mitochondria are maximally reduced (as in ischemia or hypoxia). The continuum described by the model has the potential to account for many disparate experimental observations and also provides a rationale for graded physiological ROS signaling at redox potentials near the minimum.

摘要

虽然人们普遍认为线粒体活性氧(ROS)平衡取决于电子传递链将O2单电子还原为超氧化物(O2.-)的速率以及细胞内抗氧化途径的清除速率,但关于完整细胞与分离线粒体中导致氧化应激的条件仍存在相当大的争议。在这里,我们假设线粒体在进化过程中经过优化,通过在中间氧化还原状态下运行,在将ROS溢出保持在最低水平的同时最大化能量输出。我们表明,分别在参与电子传递(NADH/NAD+)或ROS清除(NADPH/NADP+,GSH/GSSG)的氧化还原对的还原或氧化极端情况下,ROS平衡会丧失。这导致ROS的净溢出,随着远离最佳氧化还原电位,ROS溢出会增加。在线粒体氧化还原电位更低的情况下,ROS产生超过清除,而在更氧化的条件下(例如,在更高的工作负荷下),抗氧化防御可能会受到损害并最终不堪重负。豚鼠心脏的心肌细胞和分离线粒体均为这一假设提供了实验支持。该模型在一个单一框架内协调了以下观察结果:分离的线粒体在高还原电位(和高线粒体膜电位,Psim)下往往表现出增加的氧化应激,而完整的心脏细胞在线粒体变得更解偶联(即低Psim)或线粒体最大程度还原(如在缺血或缺氧时)时都可能表现出氧化应激。该模型所描述的连续体有可能解释许多不同的实验观察结果,也为在接近最小值的氧化还原电位下分级生理ROS信号传导提供了理论依据。

相似文献

1
Redox-optimized ROS balance: a unifying hypothesis.
Biochim Biophys Acta. 2010 Jun-Jul;1797(6-7):865-77. doi: 10.1016/j.bbabio.2010.02.016. Epub 2010 Feb 20.
2
Redox-optimized ROS balance and the relationship between mitochondrial respiration and ROS.
Biochim Biophys Acta. 2014 Feb;1837(2):287-95. doi: 10.1016/j.bbabio.2013.11.007. Epub 2013 Nov 20.
3
Increased reactive oxygen species production during reductive stress: The roles of mitochondrial glutathione and thioredoxin reductases.
Biochim Biophys Acta. 2015 Jun-Jul;1847(6-7):514-25. doi: 10.1016/j.bbabio.2015.02.012. Epub 2015 Feb 19.
4
Integrating mitochondrial energetics, redox and ROS metabolic networks: a two-compartment model.
Biophys J. 2013 Jan 22;104(2):332-43. doi: 10.1016/j.bpj.2012.11.3808.
5
Dynamic modulation of Ca2+ sparks by mitochondrial oscillations in isolated guinea pig cardiomyocytes under oxidative stress.
J Mol Cell Cardiol. 2011 Nov;51(5):632-9. doi: 10.1016/j.yjmcc.2011.05.007. Epub 2011 May 27.
6
Protein S-glutathionlyation links energy metabolism to redox signaling in mitochondria.
Redox Biol. 2016 Aug;8:110-8. doi: 10.1016/j.redox.2015.12.010. Epub 2015 Dec 31.
7
A mitochondrial oscillator dependent on reactive oxygen species.
Biophys J. 2004 Sep;87(3):2060-73. doi: 10.1529/biophysj.104.041749.
9
Sequential opening of mitochondrial ion channels as a function of glutathione redox thiol status.
J Biol Chem. 2007 Jul 27;282(30):21889-900. doi: 10.1074/jbc.M702841200. Epub 2007 May 31.
10
ROS scavenging before 27 degrees C ischemia protects hearts and reduces mitochondrial ROS, Ca2+ overload, and changes in redox state.
Am J Physiol Cell Physiol. 2007 Jun;292(6):C2021-31. doi: 10.1152/ajpcell.00231.2006. Epub 2007 Feb 7.

引用本文的文献

1
Oxidative Stress and Neurotoxicity Biomarkers in Fish Toxicology.
Antioxidants (Basel). 2025 Jul 30;14(8):939. doi: 10.3390/antiox14080939.
2
Mechano-energetic uncoupling in heart failure.
Nat Rev Cardiol. 2025 Jun 22. doi: 10.1038/s41569-025-01167-6.
4
Neurodegenerative disorders, metabolic icebergs, and mitohormesis.
Transl Neurodegener. 2024 Sep 6;13(1):46. doi: 10.1186/s40035-024-00435-8.
6
A nitroreductase responsive probe for early diagnosis of pulmonary fibrosis disease.
Redox Biol. 2024 Sep;75:103294. doi: 10.1016/j.redox.2024.103294. Epub 2024 Jul 29.
7
Mitochondrial Reactive Oxygen Species in Infection and Immunity.
Biomolecules. 2024 Jun 8;14(6):670. doi: 10.3390/biom14060670.
8
Mitochondrial calcium in cardiac ischemia/reperfusion injury and cardioprotection.
Basic Res Cardiol. 2024 Aug;119(4):569-585. doi: 10.1007/s00395-024-01060-2. Epub 2024 Jun 19.
9
Management of ROS and Regulatory Cell Death in Myocardial Ischemia-Reperfusion Injury.
Mol Biotechnol. 2025 May;67(5):1765-1783. doi: 10.1007/s12033-024-01173-y. Epub 2024 Jun 9.

本文引用的文献

1
Energetic performance is improved by specific activation of K+ fluxes through K(Ca) channels in heart mitochondria.
Biochim Biophys Acta. 2010 Jan;1797(1):71-80. doi: 10.1016/j.bbabio.2009.08.002. Epub 2009 Sep 8.
2
From mitochondrial dynamics to arrhythmias.
Int J Biochem Cell Biol. 2009 Oct;41(10):1940-8. doi: 10.1016/j.biocel.2009.02.016. Epub 2009 Mar 5.
3
Genome-wide fitness and expression profiling implicate Mga2 in adaptation to hydrogen peroxide.
PLoS Genet. 2009 May;5(5):e1000488. doi: 10.1371/journal.pgen.1000488. Epub 2009 May 29.
4
Mitochondria and reactive oxygen species.
Free Radic Biol Med. 2009 Aug 15;47(4):333-43. doi: 10.1016/j.freeradbiomed.2009.05.004. Epub 2009 May 8.
5
Oxygen sensitivity of mitochondrial reactive oxygen species generation depends on metabolic conditions.
J Biol Chem. 2009 Jun 12;284(24):16236-16245. doi: 10.1074/jbc.M809512200. Epub 2009 Apr 14.
6
How mitochondria produce reactive oxygen species.
Biochem J. 2009 Jan 1;417(1):1-13. doi: 10.1042/BJ20081386.
7
Mitochondrial oscillations in physiology and pathophysiology.
Adv Exp Med Biol. 2008;641:98-117. doi: 10.1007/978-0-387-09794-7_8.
8
Glutathione oxidation as a trigger of mitochondrial depolarization and oscillation in intact hearts.
J Mol Cell Cardiol. 2008 Nov;45(5):650-60. doi: 10.1016/j.yjmcc.2008.07.017. Epub 2008 Aug 7.
9
The role of Na dysregulation in cardiac disease and how it impacts electrophysiology.
Drug Discov Today Dis Models. 2007;4(4):207-217. doi: 10.1016/j.ddmod.2007.11.003.
10
Enhancing mitochondrial Ca2+ uptake in myocytes from failing hearts restores energy supply and demand matching.
Circ Res. 2008 Aug 1;103(3):279-88. doi: 10.1161/CIRCRESAHA.108.175919. Epub 2008 Jul 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验