Suppr超能文献

抑制血管发生,而非血管生成,可防止小鼠照射后胶质母细胞瘤的复发。

Inhibition of vasculogenesis, but not angiogenesis, prevents the recurrence of glioblastoma after irradiation in mice.

机构信息

Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, California 94305-5152, USA.

出版信息

J Clin Invest. 2010 Mar;120(3):694-705. doi: 10.1172/JCI40283. Epub 2010 Feb 22.

Abstract

Despite the high doses of radiation delivered in the treatment of patients with glioblastoma multiforme (GBM), the tumors invariably recur within the irradiation field, resulting in a low cure rate. Understanding the mechanism of such recurrence is therefore important. Here we have shown in an intracranial GBM xenograft model that irradiation induces recruitment of bone marrow-derived cells (BMDCs) into the tumors, restoring the radiation-damaged vasculature by vasculogenesis and thereby allowing the growth of surviving tumor cells. BMDC influx was initiated by induction of HIF-1 in the irradiated tumors, and blocking this influx prevented tumor recurrence. Previous studies have indicated that BMDCs are recruited to tumors in part through the interaction between the HIF-1-dependent stromal cell-derived factor-1 (SDF-1) and its receptor, CXCR4. Pharmacologic inhibition of HIF-1 or of the SDF-1/CXCR4 interaction prevented the influx of BMDCs, primarily CD11b+ myelomonocytes, and the postirradiation development of functional tumor vasculature, resulting in abrogation of tumor regrowth. Similar results were found using neutralizing antibodies against CXCR4. Our data therefore suggest a novel approach for the treatment of GBM: in addition to radiotherapy, the vasculogenesis pathway needs to be blocked, and this can be accomplished using the clinically approved drug AMD3100, a small molecule inhibitor of SDF-1/CXCR4 interactions.

摘要

尽管在治疗多形性胶质母细胞瘤(GBM)患者时给予了高剂量的辐射,但肿瘤总是在照射野内复发,导致治愈率低。因此,了解这种复发的机制非常重要。在这里,我们在颅内 GBM 异种移植模型中表明,辐射诱导骨髓来源的细胞(BMDCs)浸润到肿瘤中,通过血管生成恢复辐射损伤的血管,从而允许存活的肿瘤细胞生长。BMDC 浸润是由照射肿瘤中 HIF-1 的诱导引起的,并且阻断这种浸润可以防止肿瘤复发。先前的研究表明,BMDCs 通过 HIF-1 依赖性基质细胞衍生因子-1(SDF-1)与其受体 CXCR4 之间的相互作用部分募集到肿瘤中。HIF-1 或 SDF-1/CXCR4 相互作用的药理学抑制可防止 BMDC(主要是 CD11b+髓样单核细胞)的浸润以及照射后功能性肿瘤血管的发育,从而阻止肿瘤再生长。使用针对 CXCR4 的中和抗体也得到了类似的结果。因此,我们的数据表明了一种治疗 GBM 的新方法:除了放射治疗外,还需要阻断血管生成途径,这可以使用临床批准的药物 AMD3100 来实现,AMD3100 是 SDF-1/CXCR4 相互作用的小分子抑制剂。

相似文献

1
Inhibition of vasculogenesis, but not angiogenesis, prevents the recurrence of glioblastoma after irradiation in mice.
J Clin Invest. 2010 Mar;120(3):694-705. doi: 10.1172/JCI40283. Epub 2010 Feb 22.
2
Resisting arrest: a switch from angiogenesis to vasculogenesis in recurrent malignant gliomas.
J Clin Invest. 2010 Mar;120(3):663-7. doi: 10.1172/JCI42345. Epub 2010 Feb 22.
4
Recruitment of myeloid but not endothelial precursor cells facilitates tumor regrowth after local irradiation.
Cancer Res. 2010 Jul 15;70(14):5679-85. doi: 10.1158/0008-5472.CAN-09-4446. Epub 2010 Jul 14.
5
Combination of vessel-targeting agents and fractionated radiation therapy: the role of the SDF-1/CXCR4 pathway.
Int J Radiat Oncol Biol Phys. 2013 Jul 15;86(4):777-84. doi: 10.1016/j.ijrobp.2013.02.036. Epub 2013 Apr 16.
6
Inhibiting vasculogenesis after radiation: a new paradigm to improve local control by radiotherapy.
Semin Radiat Oncol. 2013 Oct;23(4):281-7. doi: 10.1016/j.semradonc.2013.05.002.
7
Vasculogenesis: a crucial player in the resistance of solid tumours to radiotherapy.
Br J Radiol. 2014 Mar;87(1035):20130686. doi: 10.1259/bjr.20130686.
8
Blockade of SDF-1 after irradiation inhibits tumor recurrences of autochthonous brain tumors in rats.
Neuro Oncol. 2014 Jan;16(1):21-8. doi: 10.1093/neuonc/not149. Epub 2013 Dec 10.
9
Hypoxia-inducible factor 1 and VEGF upregulate CXCR4 in glioblastoma: implications for angiogenesis and glioma cell invasion.
Lab Invest. 2006 Dec;86(12):1221-32. doi: 10.1038/labinvest.3700482. Epub 2006 Oct 30.
10
Adult mouse subventricular zones stimulate glioblastoma stem cells specific invasion through CXCL12/CXCR4 signaling.
Neuro Oncol. 2015 Jan;17(1):81-94. doi: 10.1093/neuonc/nou144. Epub 2014 Aug 1.

引用本文的文献

1
Cancer Immunotherapy in Combination with Radiotherapy and/or Chemotherapy: Mechanisms and Clinical Therapy.
MedComm (2020). 2025 Aug 31;6(9):e70346. doi: 10.1002/mco2.70346. eCollection 2025 Sep.
2
Targeting Macrophages in Glioblastoma: Current Therapies and Future Directions.
Cancers (Basel). 2025 Aug 18;17(16):2687. doi: 10.3390/cancers17162687.
3
Harnessing innate immunity against glioblastoma microenvironment.
Front Immunol. 2025 Jul 25;16:1648601. doi: 10.3389/fimmu.2025.1648601. eCollection 2025.
5
Unraveling the immunosuppressive microenvironment of glioblastoma and advancements in treatment.
Front Immunol. 2025 May 15;16:1590781. doi: 10.3389/fimmu.2025.1590781. eCollection 2025.
7
Understanding Neovascularization in Glioblastoma: Insights from the Current Literature.
Int J Mol Sci. 2025 Mar 19;26(6):2763. doi: 10.3390/ijms26062763.
8
Immunological Effects of Proton Radiotherapy: New Opportunities and Challenges in Cancer Therapy.
Cancer Innov. 2025 Mar 7;4(2):e70003. doi: 10.1002/cai2.70003. eCollection 2025 Apr.
9
Targeting stromal cells in tumor microenvironment as a novel treatment strategy for glioma.
Cancer Cell Int. 2025 Feb 21;25(1):58. doi: 10.1186/s12935-025-03692-3.

本文引用的文献

4
The impact of O2 availability on human cancer.
Nat Rev Cancer. 2008 Dec;8(12):967-75. doi: 10.1038/nrc2540. Epub 2008 Nov 6.
6
Modes of resistance to anti-angiogenic therapy.
Nat Rev Cancer. 2008 Aug;8(8):592-603. doi: 10.1038/nrc2442.
9
Tumor refractoriness to anti-VEGF treatment is mediated by CD11b+Gr1+ myeloid cells.
Nat Biotechnol. 2007 Aug;25(8):911-20. doi: 10.1038/nbt1323. Epub 2007 Jul 29.
10
Influence of tumor cell and stroma sensitivity on tumor response to radiation.
Cancer Res. 2007 May 1;67(9):4016-21. doi: 10.1158/0008-5472.CAN-06-4498.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验