Suppr超能文献

通过一种与系统发育组无关的搜索方法揭示人类成人结肠中的丰富核心微生物组。

Unveiling an abundant core microbiota in the human adult colon by a phylogroup-independent searching approach.

机构信息

Nofima, The Norwegian Institute of Food, Fisheries and Aquaculture Research, Aas, Norway.

出版信息

ISME J. 2011 Mar;5(3):519-31. doi: 10.1038/ismej.2010.129. Epub 2010 Aug 26.

Abstract

The potential presence of widespread and stable bacterial core phylogroups in the human colon has promoted considerable attention. Despite major efforts, no such phylogroups have yet been identified. Therefore, using a novel phylogroup- and tree-independent approach, we present a reanalysis of 1,114,722 V2 region and 71,550 near full-length 16S rRNA sequences from a total of 210 human beings, with widespread geographic origin, ethnic background and diet, in addition to a wide range of other mammals. We found two highly prevalent core phylogroups (cores 1 and 2), belonging to the clostridial family Lachnospiraceae. These core phylogroups showed a log-normal distribution among human individuals, while non-core phylogroups showed more skewed distributions towards individuals with low levels compared with the log-normal distribution. Molecular clock analyses suggest that core 2 co-evolved with the radiation of vertebrates, while core 1 co-evolved with the mammals. Taken together, the stability, prevalence and potential functionality support the fact that the identified core phylogroups are pivotal in maintaining gut homeostasis and health.

摘要

广泛而稳定存在于人类结肠中的细菌核心菌门引起了相当大的关注。尽管付出了巨大努力,但尚未鉴定出此类菌门。因此,我们采用一种新颖的菌门和树状结构无关的方法,对来自总计 210 位具有广泛地理起源、种族背景和饮食的个体的 1,114,722 个 V2 区和 71,550 个近全长 16S rRNA 序列进行了重新分析,此外还包括了多种其他哺乳动物。我们发现了两个高度流行的核心菌门(核心 1 和核心 2),它们属于梭菌科 Lachnospiraceae。这些核心菌门在人类个体中呈对数正态分布,而非核心菌门的分布则偏向于水平较低的个体,呈偏态分布,与对数正态分布不同。分子钟分析表明,核心 2 与脊椎动物的辐射共同进化,而核心 1 则与哺乳动物共同进化。综上所述,这些核心菌门的稳定性、普遍性和潜在功能支持了这样一个事实,即鉴定出的核心菌门在维持肠道内环境平衡和健康方面起着关键作用。

相似文献

1
Unveiling an abundant core microbiota in the human adult colon by a phylogroup-independent searching approach.
ISME J. 2011 Mar;5(3):519-31. doi: 10.1038/ismej.2010.129. Epub 2010 Aug 26.
5
Differences between the normal vaginal bacterial community of baboons and that of humans.
Am J Primatol. 2011 Feb;73(2):119-26. doi: 10.1002/ajp.20851. Epub 2010 Sep 17.
6
Ecological characterisation of the colonic microbiota in arctic and sub-arctic seals.
Microb Ecol. 2010 Aug;60(2):320-30. doi: 10.1007/s00248-010-9690-x. Epub 2010 Jun 4.
7
The Core Gut Microbiome of the American Cockroach, Periplaneta americana, Is Stable and Resilient to Dietary Shifts.
Appl Environ Microbiol. 2016 Oct 27;82(22):6603-6610. doi: 10.1128/AEM.01837-16. Print 2016 Nov 15.
8
Diet and phylogeny shape the gut microbiota of Antarctic seals: a comparison of wild and captive animals.
Environ Microbiol. 2013 Apr;15(4):1132-45. doi: 10.1111/1462-2920.12022. Epub 2012 Nov 12.
9
Towards a balanced view of the bacterial tree of life.
Microbiome. 2017 Oct 17;5(1):140. doi: 10.1186/s40168-017-0360-9.
10
The bacterial microbiota of Stolotermes ruficeps (Stolotermitidae), a phylogenetically basal termite endemic to New Zealand.
FEMS Microbiol Ecol. 2014 Dec;90(3):678-88. doi: 10.1111/1574-6941.12424. Epub 2014 Sep 29.

引用本文的文献

2
Sexual Dimorphism in Lipid Metabolism and Gut Microbiota in Mice Fed a High-Fat Diet.
Nutrients. 2023 May 2;15(9):2175. doi: 10.3390/nu15092175.
3
The species-level microbiota of healthy eyes revealed by the integration of metataxonomics with culturomics and genome analysis.
Front Microbiol. 2022 Sep 2;13:950591. doi: 10.3389/fmicb.2022.950591. eCollection 2022.
4
The associations between intestinal bacteria of Eospalax cansus and soil bacteria of its habitat.
BMC Vet Res. 2022 Apr 2;18(1):129. doi: 10.1186/s12917-022-03223-6.
5
Comparing Published Gut Microbiome Taxonomic Data Across Multinational Studies.
Nurs Res. 2022;71(1):43-53. doi: 10.1097/NNR.0000000000000557.
7
A Multiomic Approach to Investigate the Effects of a Weight Loss Program on the Intestinal Health of Overweight Horses.
Front Vet Sci. 2021 Jun 18;8:668120. doi: 10.3389/fvets.2021.668120. eCollection 2021.
8
Contribution of Gut Microbiota to Immunological Changes in Alzheimer's Disease.
Front Immunol. 2021 May 31;12:683068. doi: 10.3389/fimmu.2021.683068. eCollection 2021.
10
Acute Radiation Syndrome and the Microbiome: Impact and Review.
Front Pharmacol. 2021 May 18;12:643283. doi: 10.3389/fphar.2021.643283. eCollection 2021.

本文引用的文献

1
CONFIDENCE LIMITS ON PHYLOGENIES: AN APPROACH USING THE BOOTSTRAP.
Evolution. 1985 Jul;39(4):783-791. doi: 10.1111/j.1558-5646.1985.tb00420.x.
2
Organismal, genetic, and transcriptional variation in the deeply sequenced gut microbiomes of identical twins.
Proc Natl Acad Sci U S A. 2010 Apr 20;107(16):7503-8. doi: 10.1073/pnas.1002355107. Epub 2010 Apr 2.
3
Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities.
Appl Environ Microbiol. 2009 Dec;75(23):7537-41. doi: 10.1128/AEM.01541-09. Epub 2009 Oct 2.
5
Towards the human intestinal microbiota phylogenetic core.
Environ Microbiol. 2009 Oct;11(10):2574-84. doi: 10.1111/j.1462-2920.2009.01982.x. Epub 2009 Jul 6.
6
Rapid and accurate large-scale coestimation of sequence alignments and phylogenetic trees.
Science. 2009 Jun 19;324(5934):1561-4. doi: 10.1126/science.1171243.
8
On the origin of prokaryotic species.
Genome Res. 2009 May;19(5):744-56. doi: 10.1101/gr.086645.108.
9
Characterizing a model human gut microbiota composed of members of its two dominant bacterial phyla.
Proc Natl Acad Sci U S A. 2009 Apr 7;106(14):5859-64. doi: 10.1073/pnas.0901529106. Epub 2009 Mar 24.
10
A core gut microbiome in obese and lean twins.
Nature. 2009 Jan 22;457(7228):480-4. doi: 10.1038/nature07540. Epub 2008 Nov 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验