Unit on Human Copper Metabolism, Molecular Medicine Program, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-1853, USA.
Am J Med Genet A. 2010 Oct;152A(10):2529-34. doi: 10.1002/ajmg.a.33632.
The primary mechanism of copper transport to the brain is unknown, although this process is drastically impaired in Menkes disease, an X-linked neurodevelopmental disorder caused by mutations in an evolutionarily conserved copper transporter, ATP7A. Potential central nervous system entry routes for copper include brain capillary endothelial cells that originate from mesodermal angioblasts and form the blood-brain barrier, and the choroid plexuses, which derive from embryonic ectoderm, and form the blood-cerebrospinal fluid barrier. We exploited a rare (and first reported) example of somatic mosaicism for an ATP7A mutation to shed light on questions about copper transport into the developing brain. In a 20-month-old Menkes disease patient evaluated before copper treatment, blood copper, and catecholamine concentrations were normal, whereas levels in cerebrospinal fluid were abnormal and consistent with his neurologically severe phenotype. We documented disparate levels of mosaicism for an ATP7A missense mutation, P1001L, in tissues derived from different embryonic origins; allele quantitation showed P1001L in approximately 27% of DNA samples from blood cells (mesoderm-derived) and 88% from cultured fibroblasts (ectoderm-derived). These findings imply that the P1001L mutation in the patient preceded formation of the three primary embryonic lineages at gastrulation, with the ectoderm layer ultimately harboring a higher percentage of mutation-bearing cells than mesoderm or endoderm. Since choroid plexus epithelia are derived from neuroectoderm, and brain capillary endothelial cells from mesodermal angioblasts, the clinical and biochemical findings in this infant support a critical role for the blood-CSF barrier (choroid plexus epithelia) in copper entry to the developing brain.
铜向大脑转运的主要机制尚不清楚,尽管 Menkes 病(一种 X 连锁神经发育障碍,由进化上保守的铜转运蛋白 ATP7A 的突变引起)中这一过程严重受损。铜进入中枢神经系统的潜在途径包括起源于中胚层成血管细胞并形成血脑屏障的脑毛细血管内皮细胞,以及起源于胚胎外胚层并形成血脑脊液屏障的脉络丛。我们利用 ATP7A 突变的罕见(也是首例报道)体嵌合现象,阐明了有关铜向发育中大脑转运的问题。在一名接受铜治疗前评估的 20 个月大的 Menkes 病患者中,血液铜和儿茶酚胺浓度正常,而脑脊液水平异常,与他严重的神经表型一致。我们记录了源自不同胚胎起源的组织中 ATP7A 错义突变 P1001L 的不同程度嵌合;等位基因定量显示,来自血细胞(中胚层衍生)的约 27%的 DNA 样本和来自培养成纤维细胞(外胚层衍生)的 88%的 DNA 样本中存在 P1001L。这些发现表明,该患者的 P1001L 突变发生在原肠胚形成之前的三个主要胚胎谱系形成之前,外胚层层最终携带突变细胞的比例高于中胚层或内胚层。由于脉络丛上皮来自神经外胚层,脑毛细血管内皮细胞来自中胚层成血管细胞,因此该婴儿的临床和生化发现支持血脑脊液屏障(脉络丛上皮)在铜进入发育中大脑中的关键作用。