Suppr超能文献

由高亲和力铜转运蛋白 CTR1 的变异引起的新发现的铜代谢紊乱。

Newly identified disorder of copper metabolism caused by variants in CTR1, a high-affinity copper transporter.

机构信息

Department of Paediatric Metabolic Medicine, Great Ormond Street Hospital NHS Foundation Trust, London WC1N 3JH, UK.

Department of Pediatrics B, Metabolic Clinic, Ruth Rappaport Children's Hospital, Rambam Health Care Campus and The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel.

出版信息

Hum Mol Genet. 2022 Dec 16;31(24):4121-4130. doi: 10.1093/hmg/ddac156.

Abstract

The high-affinity copper transporter CTR1 is encoded by CTR1 (SLC31A1), a gene locus for which no detailed genotype-phenotype correlations have previously been reported. We describe identical twin male infants homozygous for a novel missense variant NM_001859.4:c.284 G > A (p.Arg95His) in CTR1 with a distinctive autosomal recessive syndrome of infantile seizures and neurodegeneration, consistent with profound central nervous system copper deficiency. We used clinical, biochemical and molecular methods to delineate the first recognized examples of human CTR1 deficiency. These included clinical phenotyping, brain imaging, assays for copper, cytochrome c oxidase (CCO), and mitochondrial respiration, western blotting, cell transfection experiments, confocal and electron microscopy, protein structure modeling and fetal brain and cerebral organoid CTR1 transcriptome analyses. Comparison with two other critical mediators of cellular copper homeostasis, ATP7A and ATP7B, genes associated with Menkes disease and Wilson disease, respectively, revealed that expression of CTR1 was highest. Transcriptome analyses identified excitatory neurons and radial glia as brain cell types particularly enriched for copper transporter transcripts. We also assessed the effects of Copper Histidinate in the patients' cultured cells and in the patients, under a formal clinical protocol. Treatment normalized CCO activity and enhanced mitochondrial respiration in vitro, and was associated with modest clinical improvements. In combination with present and prior studies, these infants' clinical, biochemical and molecular phenotypes establish the impact of this novel variant on copper metabolism and cellular homeostasis and illuminate a crucial role for CTR1 in human brain development. CTR1 deficiency represents a newly defined inherited disorder of brain copper metabolism.

摘要

高亲和力铜转运蛋白 CTR1 由 CTR1(SLC31A1)编码,该基因座以前没有详细的基因型-表型相关性报道。我们描述了一对同卵双胞胎男性婴儿,他们在 CTR1 中纯合携带一种新的错义变异 NM_001859.4:c.284G > A(p.Arg95His),表现出独特的常染色体隐性遗传性婴儿癫痫和神经退行性变综合征,与中枢神经系统铜缺乏症相一致。我们使用临床、生化和分子方法描绘了第一个被识别的人类 CTR1 缺乏症的例子。这些包括临床表型、脑成像、铜、细胞色素 c 氧化酶(CCO)和线粒体呼吸、Western blot、细胞转染实验、共聚焦和电子显微镜、蛋白质结构建模以及胎儿大脑和大脑类器官 CTR1 转录组分析。与另外两个细胞铜稳态的关键调节因子 ATP7A 和 ATP7B 进行比较,分别与 Menkes 病和 Wilson 病相关的基因,发现 CTR1 的表达最高。转录组分析表明,表达 CTR1 的细胞类型包括兴奋性神经元和放射状胶质细胞,这些细胞类型在大脑中对铜转运蛋白转录物的表达特别丰富。我们还根据正式的临床方案,评估了 Copper Histidinate 在患者培养细胞中和患者中的治疗效果。治疗使 CCO 活性在体外正常化,并增强线粒体呼吸,与适度的临床改善相关。结合目前和以前的研究,这些婴儿的临床、生化和分子表型确定了该新型变异对铜代谢和细胞内稳态的影响,并阐明了 CTR1 在人类大脑发育中的关键作用。 CTR1 缺乏症代表了一种新定义的脑铜代谢遗传性疾病。

相似文献

2
Fatal congenital copper transport defect caused by a homozygous likely pathogenic variant of SLC31A1.
Clin Genet. 2023 May;103(5):585-589. doi: 10.1111/cge.14289. Epub 2022 Dec 28.
4
Involvement of CTR1 and ATP7A in lead (Pb)-induced copper (Cu) accumulation in choroidal epithelial cells.
Toxicol Lett. 2014 Feb 10;225(1):110-8. doi: 10.1016/j.toxlet.2013.11.034. Epub 2013 Dec 6.
7
Abnormalities in the copper transporter CTR1 in postmortem hippocampus in schizophrenia: A subregion and laminar analysis.
Schizophr Res. 2021 Feb;228:60-73. doi: 10.1016/j.schres.2020.12.016. Epub 2021 Jan 9.
8
Penicillamine increases free copper and enhances oxidative stress in the brain of toxic milk mice.
PLoS One. 2012;7(5):e37709. doi: 10.1371/journal.pone.0037709. Epub 2012 May 21.
9
The copper-transporting ATPases, menkes and wilson disease proteins, have distinct roles in adult and developing cerebellum.
J Biol Chem. 2005 Mar 11;280(10):9640-5. doi: 10.1074/jbc.M413840200. Epub 2005 Jan 5.
10
Inborn errors of copper metabolism.
Handb Clin Neurol. 2013;113:1745-54. doi: 10.1016/B978-0-444-59565-2.00045-9.

引用本文的文献

1
Role and mechanisms of cuproptosis in the pathogenesis of Wilson's disease (Review).
Int J Mol Med. 2025 Aug;56(2). doi: 10.3892/ijmm.2025.5558. Epub 2025 Jun 6.
2
A primer on copper biology in the brain.
Neurobiol Dis. 2025 Aug;212:106974. doi: 10.1016/j.nbd.2025.106974. Epub 2025 May 23.
3
Cuproptosis-related genes and agents: implications in tumor drug resistance and future perspectives.
Front Pharmacol. 2025 May 8;16:1559236. doi: 10.3389/fphar.2025.1559236. eCollection 2025.
4
Prion protein promotes copper toxicity in Wilson disease.
Nat Commun. 2025 Feb 8;16(1):1468. doi: 10.1038/s41467-025-56740-x.
5
Adaptive protein synthesis in genetic models of copper deficiency and childhood neurodegeneration.
Mol Biol Cell. 2025 Mar 1;36(3):ar33. doi: 10.1091/mbc.E24-11-0512. Epub 2025 Jan 29.
6
Copper supplementation alleviates hypoxia‑induced ferroptosis and oxidative stress in neuronal cells.
Int J Mol Med. 2024 Dec;54(6). doi: 10.3892/ijmm.2024.5441. Epub 2024 Oct 18.
7
Exploring Copper's role in stroke: progress and treatment approaches.
Front Pharmacol. 2024 Sep 26;15:1409317. doi: 10.3389/fphar.2024.1409317. eCollection 2024.
8
Adaptive protein synthesis in genetic models of copper deficiency and childhood neurodegeneration.
bioRxiv. 2024 Nov 18:2024.09.09.612106. doi: 10.1101/2024.09.09.612106.
10
Mammalian copper homeostasis: physiological roles and molecular mechanisms.
Physiol Rev. 2025 Jan 1;105(1):441-491. doi: 10.1152/physrev.00011.2024. Epub 2024 Aug 22.

本文引用的文献

1
Connecting copper and cancer: from transition metal signalling to metalloplasia.
Nat Rev Cancer. 2022 Feb;22(2):102-113. doi: 10.1038/s41568-021-00417-2. Epub 2021 Nov 11.
2
Electrophysiological Maturation of Cerebral Organoids Correlates with Dynamic Morphological and Cellular Development.
Stem Cell Reports. 2020 Oct 13;15(4):855-868. doi: 10.1016/j.stemcr.2020.08.017. Epub 2020 Sep 24.
3
The mutational constraint spectrum quantified from variation in 141,456 humans.
Nature. 2020 May;581(7809):434-443. doi: 10.1038/s41586-020-2308-7. Epub 2020 May 27.
4
Copper is an essential regulator of the autophagic kinases ULK1/2 to drive lung adenocarcinoma.
Nat Cell Biol. 2020 Apr;22(4):412-424. doi: 10.1038/s41556-020-0481-4. Epub 2020 Mar 16.
5
Cell stress in cortical organoids impairs molecular subtype specification.
Nature. 2020 Feb;578(7793):142-148. doi: 10.1038/s41586-020-1962-0. Epub 2020 Jan 29.
6
Comprehensive Integration of Single-Cell Data.
Cell. 2019 Jun 13;177(7):1888-1902.e21. doi: 10.1016/j.cell.2019.05.031. Epub 2019 Jun 6.
7
Copper Transport and Disease: What Can We Learn from Organoids?
Annu Rev Nutr. 2019 Aug 21;39:75-94. doi: 10.1146/annurev-nutr-082018-124242. Epub 2019 May 31.
8
X-ray structures of the high-affinity copper transporter Ctr1.
Nat Commun. 2019 Mar 27;10(1):1386. doi: 10.1038/s41467-019-09376-7.
9
Using whole-exome sequencing to investigate the genetic bases of lysosomal storage diseases of unknown etiology.
Hum Mutat. 2017 Nov;38(11):1491-1499. doi: 10.1002/humu.23291. Epub 2017 Jul 25.
10
Accounting for Protein Subcellular Localization: A Compartmental Map of the Rat Liver Proteome.
Mol Cell Proteomics. 2017 Feb;16(2):194-212. doi: 10.1074/mcp.M116.064527. Epub 2016 Dec 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验