Suppr超能文献

基于图块的视觉词汇的器官和病理水平的 X 射线分类和检索。

X-ray categorization and retrieval on the organ and pathology level, using patch-based visual words.

机构信息

Department of Biomedical Engineering, Tel-Aviv University, 69978 Tel Aviv, Israel.

出版信息

IEEE Trans Med Imaging. 2011 Mar;30(3):733-46. doi: 10.1109/TMI.2010.2095026. Epub 2010 Nov 29.

Abstract

In this study we present an efficient image categorization and retrieval system applied to medical image databases, in particular large radiograph archives. The methodology is based on local patch representation of the image content, using a "bag of visual words" approach. We explore the effects of various parameters on system performance, and show best results using dense sampling of simple features with spatial content, and a nonlinear kernel-based support vector machine (SVM) classifier. In a recent international competition the system was ranked first in discriminating orientation and body regions in X-ray images. In addition to organ-level discrimination, we show an application to pathology-level categorization of chest X-ray data, the most popular examination in radiology. The system discriminates between healthy and pathological cases, and is also shown to successfully identify specific pathologies in a set of chest radiographs taken from a routine hospital examination. This is a first step towards similarity-based categorization, which has a major clinical implications for computer-assisted diagnostics.

摘要

在这项研究中,我们提出了一种应用于医学图像数据库(特别是大型射线照相档案)的高效图像分类和检索系统。该方法基于图像内容的局部补丁表示,使用“视觉词汇袋”方法。我们探讨了各种参数对系统性能的影响,并使用密集采样的简单特征和基于非线性核的支持向量机(SVM)分类器获得了最佳结果。在最近的国际竞赛中,该系统在区分 X 射线图像的方向和身体区域方面排名第一。除了器官级别的区分,我们还展示了一种应用于胸部 X 射线数据的病理学级分类,这是放射科最常见的检查。该系统可以区分健康和病理病例,并且还可以成功地在一组常规医院检查拍摄的胸部 X 光片中识别特定的病理。这是基于相似性的分类的第一步,这对计算机辅助诊断具有重要的临床意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验