Suppr超能文献

代谢网络模型和表达数据的功能集成,无需任意阈值处理。

Functional integration of a metabolic network model and expression data without arbitrary thresholding.

机构信息

Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA.

出版信息

Bioinformatics. 2011 Feb 15;27(4):541-7. doi: 10.1093/bioinformatics/btq702. Epub 2010 Dec 20.

Abstract

MOTIVATION

Flux balance analysis (FBA) has been used extensively to analyze genome-scale, constraint-based models of metabolism in a variety of organisms. The predictive accuracy of such models has recently been improved through the integration of high-throughput expression profiles of metabolic genes and proteins. However, extensions of FBA often require that such data be discretized a priori into sets of genes or proteins that are either 'on' or 'off'. This procedure requires selecting relatively subjective expression thresholds, often requiring several iterations and refinements to capture the expression dynamics and retain model functionality.

RESULTS

We present a method for mapping expression data from a set of environmental, genetic or temporal conditions onto a metabolic network model without the need for arbitrary expression thresholds. Metabolic Adjustment by Differential Expression (MADE) uses the statistical significance of changes in gene or protein expression to create a functional metabolic model that most accurately recapitulates the expression dynamics. MADE was used to generate a series of models that reflect the metabolic adjustments seen in the transition from fermentative- to glycerol-based respiration in Saccharomyces cerevisiae. The calculated gene states match 98.7% of possible changes in expression, and the resulting models capture functional characteristics of the metabolic shift.

AVAILABILITY

MADE is implemented in Matlab and requires a mixed-integer linear program solver. Source code is freely available at http://www.bme.virginia.edu/csbl/downloads/.

摘要

动机

通量平衡分析(FBA)已被广泛用于分析各种生物体基于约束的代谢基因组规模模型。通过整合代谢基因和蛋白质的高通量表达谱,这些模型的预测准确性最近得到了提高。然而,FBA 的扩展通常需要将这些数据事先离散化为“开”或“关”的基因或蛋白质集。此过程需要选择相对主观的表达阈值,通常需要进行多次迭代和细化,以捕获表达动态并保留模型功能。

结果

我们提出了一种方法,用于将一组环境、遗传或时间条件下的表达数据映射到代谢网络模型上,而无需使用任意的表达阈值。差异表达的代谢调整(MADE)使用基因或蛋白质表达变化的统计显着性来创建最准确地再现表达动态的功能代谢模型。MADE 用于生成一系列模型,反映了酿酒酵母从发酵型呼吸到甘油型呼吸转变过程中的代谢调整。计算出的基因状态与表达变化的 98.7%的可能变化相匹配,并且所得到的模型捕获了代谢转变的功能特征。

可用性

MADE 是在 Matlab 中实现的,需要混合整数线性程序求解器。源代码可在 http://www.bme.virginia.edu/csbl/downloads/ 免费获得。

相似文献

1
Functional integration of a metabolic network model and expression data without arbitrary thresholding.
Bioinformatics. 2011 Feb 15;27(4):541-7. doi: 10.1093/bioinformatics/btq702. Epub 2010 Dec 20.
4
OM-FBA: Integrate Transcriptomics Data with Flux Balance Analysis to Decipher the Cell Metabolism.
PLoS One. 2016 Apr 21;11(4):e0154188. doi: 10.1371/journal.pone.0154188. eCollection 2016.
5
Continuous modeling of metabolic networks with gene regulation in yeast and in vivo determination of rate parameters.
Biotechnol Bioeng. 2012 Sep;109(9):2325-39. doi: 10.1002/bit.24503. Epub 2012 Apr 24.
6
Inferring metabolic states in uncharacterized environments using gene-expression measurements.
PLoS Comput Biol. 2013;9(3):e1002988. doi: 10.1371/journal.pcbi.1002988. Epub 2013 Mar 21.
8
Sampling the solution space in genome-scale metabolic networks reveals transcriptional regulation in key enzymes.
PLoS Comput Biol. 2010 Jul 15;6(7):e1000859. doi: 10.1371/journal.pcbi.1000859.
9
Genome-Scale C Fluxomics Modeling for Metabolic Engineering of Saccharomyces cerevisiae.
Methods Mol Biol. 2019;1859:317-345. doi: 10.1007/978-1-4939-8757-3_19.
10
Advances in the integration of transcriptional regulatory information into genome-scale metabolic models.
Biosystems. 2016 Sep;147:1-10. doi: 10.1016/j.biosystems.2016.06.001. Epub 2016 Jun 7.

引用本文的文献

1
Inferring Metabolic Flux from Gene Expression Data Using METAFlux.
Methods Mol Biol. 2025;2932:187-202. doi: 10.1007/978-1-0716-4566-6_10.
2
Enhanced flux potential analysis links changes in enzyme expression to metabolic flux.
Mol Syst Biol. 2025 Apr;21(4):413-445. doi: 10.1038/s44320-025-00090-9. Epub 2025 Feb 17.
3
Genome-scale metabolic modeling in antimicrobial pharmacology.
Eng Microbiol. 2022 Apr 23;2(2):100021. doi: 10.1016/j.engmic.2022.100021. eCollection 2022 Jun.
4
Genome-scale models in human metabologenomics.
Nat Rev Genet. 2025 Feb;26(2):123-140. doi: 10.1038/s41576-024-00768-0. Epub 2024 Sep 19.
6
Metabolic model guided CRISPRi identifies a central role for phosphoglycerate mutase in persistence.
mSystems. 2024 Jul 23;9(7):e0071724. doi: 10.1128/msystems.00717-24. Epub 2024 Jun 28.
9
Multi-scale models of whole cells: progress and challenges.
Front Cell Dev Biol. 2023 Nov 7;11:1260507. doi: 10.3389/fcell.2023.1260507. eCollection 2023.
10
Uses of Multi-Objective Flux Analysis for Optimization of Microbial Production of Secondary Metabolites.
Microorganisms. 2023 Aug 24;11(9):2149. doi: 10.3390/microorganisms11092149.

本文引用的文献

1
Adaptive evolution of Escherichia coli K-12 MG1655 during growth on a Nonnative carbon source, L-1,2-propanediol.
Appl Environ Microbiol. 2010 Jul;76(13):4158-68. doi: 10.1128/AEM.00373-10. Epub 2010 Apr 30.
2
The biomass objective function.
Curr Opin Microbiol. 2010 Jun;13(3):344-9. doi: 10.1016/j.mib.2010.03.003. Epub 2010 Apr 27.
4
What is flux balance analysis?
Nat Biotechnol. 2010 Mar;28(3):245-8. doi: 10.1038/nbt.1614.
5
Applications of genome-scale metabolic reconstructions.
Mol Syst Biol. 2009;5:320. doi: 10.1038/msb.2009.77. Epub 2009 Nov 3.
6
Model-driven evaluation of the production potential for growth-coupled products of Escherichia coli.
Metab Eng. 2010 May;12(3):173-86. doi: 10.1016/j.ymben.2009.10.003. Epub 2009 Oct 17.
7
Linking high-resolution metabolic flux phenotypes and transcriptional regulation in yeast modulated by the global regulator Gcn4p.
Proc Natl Acad Sci U S A. 2009 Apr 21;106(16):6477-82. doi: 10.1073/pnas.0811091106. Epub 2009 Apr 3.
8
Network-based prediction of human tissue-specific metabolism.
Nat Biotechnol. 2008 Sep;26(9):1003-10. doi: 10.1038/nbt.1487.
9
Impact of individual mutations on increased fitness in adaptively evolved strains of Escherichia coli.
J Bacteriol. 2008 Jul;190(14):5087-94. doi: 10.1128/JB.01976-07. Epub 2008 May 16.
10
Dynamic analysis of integrated signaling, metabolic, and regulatory networks.
PLoS Comput Biol. 2008 May 23;4(5):e1000086. doi: 10.1371/journal.pcbi.1000086.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验