Suppr超能文献

铜绿假单胞菌:对最大剂量有抗性

Pseudomonas aeruginosa: resistance to the max.

作者信息

Poole Keith

机构信息

Department of Microbiology and Immunology, Queen's University Kingston, ON, Canada.

出版信息

Front Microbiol. 2011 Apr 5;2:65. doi: 10.3389/fmicb.2011.00065. eCollection 2011.

Abstract

Pseudomonas aeruginosa is intrinsically resistant to a variety of antimicrobials and can develop resistance during anti-pseudomonal chemotherapy both of which compromise treatment of infections caused by this organism. Resistance to multiple classes of antimicrobials (multidrug resistance) in particular is increasingly common in P. aeruginosa, with a number of reports of pan-resistant isolates treatable with a single agent, colistin. Acquired resistance in this organism is multifactorial and attributable to chromosomal mutations and the acquisition of resistance genes via horizontal gene transfer. Mutational changes impacting resistance include upregulation of multidrug efflux systems to promote antimicrobial expulsion, derepression of ampC, AmpC alterations that expand the enzyme's substrate specificity (i.e., extended-spectrum AmpC), alterations to outer membrane permeability to limit antimicrobial entry and alterations to antimicrobial targets. Acquired mechanisms contributing to resistance in P. aeruginosa include β-lactamases, notably the extended-spectrum β-lactamases and the carbapenemases that hydrolyze most β-lactams, aminoglycoside-modifying enzymes, and 16S rRNA methylases that provide high-level pan-aminoglycoside resistance. The organism's propensity to grow in vivo as antimicrobial-tolerant biofilms and the occurrence of hypermutator strains that yield antimicrobial resistant mutants at higher frequency also compromise anti-pseudomonal chemotherapy. With limited therapeutic options and increasing resistance will the untreatable P. aeruginosa infection soon be upon us?

摘要

铜绿假单胞菌对多种抗菌药物具有内在抗性,并且在抗假单胞菌化疗期间可能产生耐药性,这两者都会影响该病原体所致感染的治疗。尤其是对多种抗菌药物的耐药性(多重耐药)在铜绿假单胞菌中越来越常见,有许多关于对单一药物黏菌素敏感的泛耐药菌株的报道。该病原体的获得性耐药是多因素的,可归因于染色体突变以及通过水平基因转移获得耐药基因。影响耐药性的突变变化包括多药外排系统上调以促进抗菌药物排出、ampC去阻遏、AmpC改变以扩大酶的底物特异性(即超广谱AmpC)、外膜通透性改变以限制抗菌药物进入以及抗菌药物靶点改变。导致铜绿假单胞菌耐药的获得性机制包括β-内酰胺酶,尤其是水解大多数β-内酰胺类的超广谱β-内酰胺酶和碳青霉烯酶、氨基糖苷类修饰酶以及赋予高水平泛氨基糖苷类耐药性的16S rRNA甲基化酶。该病原体在体内以耐受抗菌药物的生物膜形式生长的倾向以及产生抗菌耐药突变体频率更高的超突变菌株的出现也会影响抗假单胞菌化疗。随着治疗选择有限且耐药性不断增加,无法治疗的铜绿假单胞菌感染是否很快就会降临到我们身上?

相似文献

1
Pseudomonas aeruginosa: resistance to the max.
Front Microbiol. 2011 Apr 5;2:65. doi: 10.3389/fmicb.2011.00065. eCollection 2011.
2
Pseudomonas aeruginosa - a phenomenon of bacterial resistance.
J Med Microbiol. 2009 Sep;58(Pt 9):1133-1148. doi: 10.1099/jmm.0.009142-0. Epub 2009 Jun 15.
5
[MULTIRESISTANT BACTERIA].
Acta Med Croatica. 2015 Sep;69(3):211-6.
6
Mutational and acquired carbapenem resistance mechanisms in multidrug resistant Pseudomonas aeruginosa clinical isolates from Recife, Brazil.
Mem Inst Oswaldo Cruz. 2015 Dec;110(8):1003-9. doi: 10.1590/0074-02760150233. Epub 2015 Dec 15.
7
Mechanisms of antimicrobial resistance in Gram-negative bacilli.
Ann Intensive Care. 2015 Dec;5(1):61. doi: 10.1186/s13613-015-0061-0. Epub 2015 Aug 12.

引用本文的文献

2
Biofilm Formation of in Cystic Fibrosis: Mechanisms of Persistence, Adaptation, and Pathogenesis.
Microorganisms. 2025 Jun 30;13(7):1527. doi: 10.3390/microorganisms13071527.
3
Specific variants in reduce carbapenem susceptibility in .
Microbiol Spectr. 2025 Aug 5;13(8):e0102725. doi: 10.1128/spectrum.01027-25. Epub 2025 Jul 7.
6
Combatting with β-Lactam Antibiotics: A Revived Weapon?
Antibiotics (Basel). 2025 May 20;14(5):526. doi: 10.3390/antibiotics14050526.
7
Antimicrobial Proficiency of Amlodipine: Investigating its Impact on in Urinary Tract Infections.
Indian J Microbiol. 2025 Mar;65(1):347-358. doi: 10.1007/s12088-024-01280-z. Epub 2024 Apr 18.
8
Description of sp. nov., carrying a novel class C β-lactamase gene variant, isolated from gut samples of Atlantic mackerel ().
Front Microbiol. 2025 Apr 14;16:1530878. doi: 10.3389/fmicb.2025.1530878. eCollection 2025.
10
Secreted retropepsin-like enzymes are essential for stress tolerance and biofilm formation in .
bioRxiv. 2025 Apr 6:2025.03.18.643919. doi: 10.1101/2025.03.18.643919.

本文引用的文献

1
Multidrug-resistant Pseudomonas aeruginosa bloodstream infections: risk factors and mortality.
Epidemiol Infect. 2011 Nov;139(11):1740-9. doi: 10.1017/S0950268810003055.
3
Emerging carbapenemases: a global perspective.
Int J Antimicrob Agents. 2010 Nov;36 Suppl 3:S8-14. doi: 10.1016/S0924-8579(10)70004-2.
5
Anti-pseudomonal beta-lactams for the initial, empirical, treatment of febrile neutropenia: comparison of beta-lactams.
Cochrane Database Syst Rev. 2010 Nov 10;2010(11):CD005197. doi: 10.1002/14651858.CD005197.pub3.
7
Pseudomonas aeruginosa bacteraemia in burns patients: Risk factors and outcomes.
Burns. 2010 Dec;36(8):1228-33. doi: 10.1016/j.burns.2010.05.009. Epub 2010 Jun 9.
8
Emergence of Pseudomonas aeruginosa strains producing high levels of persister cells in patients with cystic fibrosis.
J Bacteriol. 2010 Dec;192(23):6191-9. doi: 10.1128/JB.01651-09. Epub 2010 Oct 8.
9
Emergence of 16S rRNA methylase gene armA and cocarriage of bla(IMP-1) in Pseudomonas aeruginosa isolates from South Korea.
Diagn Microbiol Infect Dis. 2010 Dec;68(4):468-70. doi: 10.1016/j.diagmicrobio.2010.07.021.
10
Bacterial hypermutation in cystic fibrosis, not only for antibiotic resistance.
Clin Microbiol Infect. 2010 Jul;16(7):798-808. doi: 10.1111/j.1469-0691.2010.03250.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验