Suppr超能文献

Mfc1 是减数分裂和孢子形成细胞中新的前孢子膜铜转运蛋白。

Mfc1 is a novel forespore membrane copper transporter in meiotic and sporulating cells.

机构信息

Départements de Biochimie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada.

出版信息

J Biol Chem. 2011 Sep 30;286(39):34356-72. doi: 10.1074/jbc.M111.280396. Epub 2011 Aug 2.

Abstract

To gain insight in the molecular basis of copper homeostasis during meiosis, we have used DNA microarrays to analyze meiotic gene expression in the model yeast Schizosaccharomyces pombe. Profiling data identified a novel meiosis-specific gene, termed mfc1(+), that encodes a putative major facilitator superfamily-type transporter. Although Mfc1 does not exhibit any significant sequence homology with the copper permease Ctr4, it contains four putative copper-binding motifs that are typically found in members of the copper transporter family of copper transporters. Similarly to the ctr4(+) gene, the transcription of mfc1(+) was induced by low concentrations of copper. However, its temporal expression profile during meiosis was distinct to ctr4(+). Whereas Ctr4 was observed at the plasma membrane shortly after induction of meiosis, Mfc1 appeared later in precursor vesicles and, subsequently, at the forespore membrane of ascospores. Using the fluorescent copper-binding tracker Coppersensor-1 (CS1), labile cellular copper was primarily detected in the forespores in an mfc1(+)/mfc1(+) strain, whereas an mfc1Δ/mfc1Δ mutant exhibited an intracellular dispersed punctate distribution of labile copper ions. In addition, the copper amine oxidase Cao1, which localized primarily in the forespores of asci, was fully active in mfc1(+)/mfc1(+) cells, but its activity was drastically reduced in an mfc1Δ/mfc1Δ strain. Furthermore, our data showed that meiotic cells that express the mfc1(+) gene have a distinct developmental advantage over mfc1Δ/mfc1Δ mutant cells when copper is limiting. Taken together, the data reveal that Mfc1 serves to transport copper for accurate and timely meiotic differentiation under copper-limiting conditions.

摘要

为了深入了解减数分裂过程中铜稳态的分子基础,我们利用 DNA 微阵列分析了模式酵母裂殖酵母中的减数分裂基因表达。分析数据鉴定出一个新的减数分裂特异性基因,称为 mfc1(+),它编码一个假定的主要易化剂超家族型转运蛋白。虽然 Mfc1 与铜渗透蛋白 Ctr4 没有任何显著的序列同源性,但它含有四个假定的铜结合基序,这些基序通常存在于铜转运体家族的铜转运体成员中。与 ctr4(+)基因相似,mfc1(+)的转录受低浓度铜的诱导。然而,它在减数分裂过程中的表达谱与 ctr4(+)不同。虽然 Ctr4 在减数分裂诱导后不久出现在质膜上,但 Mfc1 出现在前体小泡中,随后出现在子囊孢子的前孢子膜上。使用荧光铜结合追踪剂 Coppersensor-1 (CS1),在 mfc1(+)/mfc1(+)菌株中,可移动的细胞内铜主要在前孢子中检测到,而 mfc1Δ/mfc1Δ 突变体表现出可移动铜离子的细胞内分散点状分布。此外,主要定位于子囊孢子中的铜胺氧化酶 Cao1 在 mfc1(+)/mfc1(+)细胞中完全活跃,但在 mfc1Δ/mfc1Δ 菌株中其活性大大降低。此外,我们的数据表明,在铜限制条件下,表达 mfc1(+)基因的减数分裂细胞比 mfc1Δ/mfc1Δ 突变体细胞具有明显的发育优势。总之,这些数据表明,Mfc1 在外源铜限制条件下,能够促进铜的运输,以确保减数分裂的精确和及时分化。

相似文献

1
Mfc1 is a novel forespore membrane copper transporter in meiotic and sporulating cells.
J Biol Chem. 2011 Sep 30;286(39):34356-72. doi: 10.1074/jbc.M111.280396. Epub 2011 Aug 2.
2
Characterization of Schizosaccharomyces pombe copper transporter proteins in meiotic and sporulating cells.
J Biol Chem. 2014 Apr 4;289(14):10168-81. doi: 10.1074/jbc.M113.543678. Epub 2014 Feb 25.
3
A role for the transcription factor Mca1 in activating the meiosis-specific copper transporter Mfc1.
PLoS One. 2018 Aug 7;13(8):e0201861. doi: 10.1371/journal.pone.0201861. eCollection 2018.
4
Transcriptional regulation of the copper transporter mfc1 in meiotic cells.
Eukaryot Cell. 2013 Apr;12(4):575-90. doi: 10.1128/EC.00019-13. Epub 2013 Feb 8.
5
Mfc1 is a novel copper transporter during meiosis.
Commun Integr Biol. 2012 Mar 1;5(2):118-21. doi: 10.4161/cib.18716.
6
Copper-dependent trafficking of the Ctr4-Ctr5 copper transporting complex.
PLoS One. 2010 Aug 4;5(8):e11964. doi: 10.1371/journal.pone.0011964.
7
Copper transport and regulation in Schizosaccharomyces pombe.
Biochem Soc Trans. 2013 Dec;41(6):1679-86. doi: 10.1042/BST2013089.
8
Functional dissection of Ctr4 and Ctr5 amino-terminal regions reveals motifs with redundant roles in copper transport.
Microbiology (Reading). 2006 Jan;152(Pt 1):209-222. doi: 10.1099/mic.0.28392-0.
10
Cell-surface copper transporters and superoxide dismutase 1 are essential for outgrowth during fungal spore germination.
J Biol Chem. 2017 Jul 14;292(28):11896-11914. doi: 10.1074/jbc.M117.794677. Epub 2017 Jun 1.

引用本文的文献

1
A histochemical approach to activity-based copper sensing reveals cuproplasia-dependent vulnerabilities in cancer.
Proc Natl Acad Sci U S A. 2025 Jan 21;122(3):e2412816122. doi: 10.1073/pnas.2412816122. Epub 2025 Jan 15.
2
Small-Molecule Fluorescent Probes for Binding- and Activity-Based Sensing of Redox-Active Biological Metals.
Chem Rev. 2024 May 8;124(9):5846-5929. doi: 10.1021/acs.chemrev.3c00819. Epub 2024 Apr 24.
3
Thioether Coordination Chemistry for Molecular Imaging of Copper in Biological Systems.
Isr J Chem. 2016 Oct 1;56(9-10):724-737. doi: 10.1002/ijch.201600023. Epub 2016 Jul 25.
5
A role for the transcription factor Mca1 in activating the meiosis-specific copper transporter Mfc1.
PLoS One. 2018 Aug 7;13(8):e0201861. doi: 10.1371/journal.pone.0201861. eCollection 2018.
6
Tuning the Color Palette of Fluorescent Copper Sensors through Systematic Heteroatom Substitution at Rhodol Cores.
ACS Chem Biol. 2018 Jul 20;13(7):1844-1852. doi: 10.1021/acschembio.7b00748. Epub 2017 Nov 7.
7
Cell-surface copper transporters and superoxide dismutase 1 are essential for outgrowth during fungal spore germination.
J Biol Chem. 2017 Jul 14;292(28):11896-11914. doi: 10.1074/jbc.M117.794677. Epub 2017 Jun 1.
8
Analytical Methods for Imaging Metals in Biology: From Transition Metal Metabolism to Transition Metal Signaling.
Anal Chem. 2017 Jan 3;89(1):22-41. doi: 10.1021/acs.analchem.6b04631. Epub 2016 Dec 15.
9
Global Fitness Profiling Identifies Arsenic and Cadmium Tolerance Mechanisms in Fission Yeast.
G3 (Bethesda). 2016 Oct 13;6(10):3317-3333. doi: 10.1534/g3.116.033829.
10
Php4 Is a Key Player for Iron Economy in Meiotic and Sporulating Cells.
G3 (Bethesda). 2016 Oct 13;6(10):3077-3095. doi: 10.1534/g3.116.031898.

本文引用的文献

1
Zinc sparks are triggered by fertilization and facilitate cell cycle resumption in mammalian eggs.
ACS Chem Biol. 2011 Jul 15;6(7):716-23. doi: 10.1021/cb200084y. Epub 2011 Apr 28.
2
Host iron withholding demands siderophore utilization for Candida glabrata to survive macrophage killing.
PLoS Pathog. 2011 Mar;7(3):e1001322. doi: 10.1371/journal.ppat.1001322. Epub 2011 Mar 17.
4
Molecular genetics of Schizosaccharomyces pombe.
Methods Enzymol. 2010;470:759-95. doi: 10.1016/S0076-6879(10)70032-X. Epub 2010 Mar 1.
5
Copper-dependent trafficking of the Ctr4-Ctr5 copper transporting complex.
PLoS One. 2010 Aug 4;5(8):e11964. doi: 10.1371/journal.pone.0011964.
6
Zinc availability regulates exit from meiosis in maturing mammalian oocytes.
Nat Chem Biol. 2010 Sep;6(9):674-81. doi: 10.1038/nchembio.419. Epub 2010 Aug 8.
7
The Drosophila copper transporter Ctr1C functions in male fertility.
J Biol Chem. 2010 May 28;285(22):17089-97. doi: 10.1074/jbc.M109.090282. Epub 2010 Mar 29.
8
Copper metallochaperones.
Annu Rev Biochem. 2010;79:537-62. doi: 10.1146/annurev-biochem-030409-143539.
9
Genetics of mammalian meiosis: regulation, dynamics and impact on fertility.
Nat Rev Genet. 2010 Feb;11(2):124-36. doi: 10.1038/nrg2723. Epub 2010 Jan 6.
10
The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity.
Proc Natl Acad Sci U S A. 2009 May 19;106(20):8344-9. doi: 10.1073/pnas.0812808106. Epub 2009 May 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验