Suppr超能文献

裂殖酵母中的铜转运和调控。

Copper transport and regulation in Schizosaccharomyces pombe.

机构信息

*Département de Biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, rue Jean Mignault, Sherbrooke, QC, Canada, J1E 4K8.

出版信息

Biochem Soc Trans. 2013 Dec;41(6):1679-86. doi: 10.1042/BST2013089.

Abstract

The fission yeast Schizosaccharomyces pombe has been successfully used as a model to gain fundamental knowledge in understanding how eukaryotic cells acquire copper during vegetative growth. These studies have revealed the existence of a heteromeric Ctr4-Ctr5 plasma membrane complex that mediates uptake of copper within the cells. Furthermore, additional studies have led to the identification of one of the first vacuolar copper transporters, Ctr6, as well as the copper-responsive Cuf1 transcription factor. Recent investigations have extended the use of S. pombe to elucidate new roles for copper metabolism in meiotic differentiation. For example, these studies have led to the discovery of Mfc1, which turned out to be the first example of a meiosis-specific copper transporter. Whereas copper-dependent transcriptional regulation of the Ctr family members is under the control of Cuf1 during mitosis or meiosis, meiosis-specific copper transporter Mfc1 is regulated by the recently discovered transactivator Mca1. It is foreseeable that identification of novel meiotic copper-related proteins will serve as stepping stones to unravel fundamental aspects of copper homoeostasis.

摘要

裂殖酵母(Schizosaccharomyces pombe)已成功用作模型,以获得有关真核细胞在营养生长过程中获取铜的基本认识。这些研究揭示了存在一种异源 Ctr4-Ctr5 质膜复合物,该复合物介导细胞内铜的摄取。此外,进一步的研究导致鉴定了第一个液泡铜转运蛋白 Ctr6 以及铜响应的 Cuf1 转录因子。最近的调查将裂殖酵母的用途扩展到阐明铜代谢在减数分裂分化中的新作用。例如,这些研究导致发现了 Mfc1,它原来是第一个减数分裂特异性铜转运蛋白的例子。在有丝分裂或减数分裂期间,Ctr 家族成员的铜依赖性转录调控受 Cuf1 控制,而减数分裂特异性铜转运蛋白 Mfc1 则受最近发现的转录激活子 Mca1 调控。可以预见的是,鉴定新的减数分裂铜相关蛋白将成为揭示铜动态平衡基本方面的踏脚石。

相似文献

1
Copper transport and regulation in Schizosaccharomyces pombe.
Biochem Soc Trans. 2013 Dec;41(6):1679-86. doi: 10.1042/BST2013089.
2
Characterization of Schizosaccharomyces pombe copper transporter proteins in meiotic and sporulating cells.
J Biol Chem. 2014 Apr 4;289(14):10168-81. doi: 10.1074/jbc.M113.543678. Epub 2014 Feb 25.
3
Mfc1 is a novel forespore membrane copper transporter in meiotic and sporulating cells.
J Biol Chem. 2011 Sep 30;286(39):34356-72. doi: 10.1074/jbc.M111.280396. Epub 2011 Aug 2.
4
Transcriptional regulation of the copper transporter mfc1 in meiotic cells.
Eukaryot Cell. 2013 Apr;12(4):575-90. doi: 10.1128/EC.00019-13. Epub 2013 Feb 8.
5
Identification of a novel high affinity copper transport complex in the fission yeast Schizosaccharomyces pombe.
J Biol Chem. 2001 Jun 8;276(23):20529-35. doi: 10.1074/jbc.M102004200. Epub 2001 Mar 26.
6
A role for the transcription factor Mca1 in activating the meiosis-specific copper transporter Mfc1.
PLoS One. 2018 Aug 7;13(8):e0201861. doi: 10.1371/journal.pone.0201861. eCollection 2018.
8
Cell-surface copper transporters and superoxide dismutase 1 are essential for outgrowth during fungal spore germination.
J Biol Chem. 2017 Jul 14;292(28):11896-11914. doi: 10.1074/jbc.M117.794677. Epub 2017 Jun 1.
9
Ctr6, a vacuolar membrane copper transporter in Schizosaccharomyces pombe.
J Biol Chem. 2002 Nov 29;277(48):46676-86. doi: 10.1074/jbc.M206444200. Epub 2002 Sep 18.
10
Copper-dependent trafficking of the Ctr4-Ctr5 copper transporting complex.
PLoS One. 2010 Aug 4;5(8):e11964. doi: 10.1371/journal.pone.0011964.

引用本文的文献

1
Antifungal Effect of Copper Nanoparticles against , an Obligate Symbiont of Ambrosia Beetle.
J Fungi (Basel). 2022 Mar 27;8(4):347. doi: 10.3390/jof8040347.
2
Cysteine Mutants of the Major Facilitator Superfamily-Type Transporter CcoA Provide Insight into Copper Import.
mBio. 2021 Aug 31;12(4):e0156721. doi: 10.1128/mBio.01567-21. Epub 2021 Jul 20.
3
Fungal-Metal Interactions: A Review of Toxicity and Homeostasis.
J Fungi (Basel). 2021 Mar 18;7(3):225. doi: 10.3390/jof7030225.
4
Molecular Regulation of Copper Homeostasis in the Male Gonad during the Process of Spermatogenesis.
Int J Mol Sci. 2020 Nov 28;21(23):9053. doi: 10.3390/ijms21239053.
5
Cu Homeostasis in Bacteria: The Ins and Outs.
Membranes (Basel). 2020 Sep 18;10(9):242. doi: 10.3390/membranes10090242.
7
Cu Transport by the Extended Family of CcoA-like Transporters (CalT) in Proteobacteria.
Sci Rep. 2019 Feb 4;9(1):1208. doi: 10.1038/s41598-018-37988-4.
9
Cell-surface copper transporters and superoxide dismutase 1 are essential for outgrowth during fungal spore germination.
J Biol Chem. 2017 Jul 14;292(28):11896-11914. doi: 10.1074/jbc.M117.794677. Epub 2017 Jun 1.
10

本文引用的文献

1
Transcriptional regulation of the copper transporter mfc1 in meiotic cells.
Eukaryot Cell. 2013 Apr;12(4):575-90. doi: 10.1128/EC.00019-13. Epub 2013 Feb 8.
2
Does copper stress lead to spindle misposition-dependent cell cycle arrest?
Genet Mol Res. 2012 Oct 25;11(4):3824-34. doi: 10.4238/2012.October.25.1.
3
Charting the travels of copper in eukaryotes from yeast to mammals.
Biochim Biophys Acta. 2012 Sep;1823(9):1580-93. doi: 10.1016/j.bbamcr.2012.02.011. Epub 2012 Feb 24.
4
A zinc-dependent mechanism regulates meiotic progression in mammalian oocytes.
Biol Reprod. 2012 Apr 19;86(4):114. doi: 10.1095/biolreprod.111.097253. Print 2012 Apr.
6
Mfc1 is a novel forespore membrane copper transporter in meiotic and sporulating cells.
J Biol Chem. 2011 Sep 30;286(39):34356-72. doi: 10.1074/jbc.M111.280396. Epub 2011 Aug 2.
8
Copper-dependent trafficking of the Ctr4-Ctr5 copper transporting complex.
PLoS One. 2010 Aug 4;5(8):e11964. doi: 10.1371/journal.pone.0011964.
9
Zinc availability regulates exit from meiosis in maturing mammalian oocytes.
Nat Chem Biol. 2010 Sep;6(9):674-81. doi: 10.1038/nchembio.419. Epub 2010 Aug 8.
10
Genetics of mammalian meiosis: regulation, dynamics and impact on fertility.
Nat Rev Genet. 2010 Feb;11(2):124-36. doi: 10.1038/nrg2723. Epub 2010 Jan 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验