Suppr超能文献

描绘铜在真核生物中从酵母到哺乳动物的迁移过程。

Charting the travels of copper in eukaryotes from yeast to mammals.

作者信息

Nevitt Tracy, Ohrvik Helena, Thiele Dennis J

机构信息

Department of Pharmacology, Duke University Medical School, Durham, NC 27710, USA.

出版信息

Biochim Biophys Acta. 2012 Sep;1823(9):1580-93. doi: 10.1016/j.bbamcr.2012.02.011. Epub 2012 Feb 24.

Abstract

Throughout evolution, all organisms have harnessed the redox properties of copper (Cu) and iron (Fe) as a cofactor or structural determinant of proteins that perform critical functions in biology. At its most sobering stance to Earth's biome, Cu biochemistry allows photosynthetic organisms to harness solar energy and convert it into the organic energy that sustains the existence of all nonphotosynthetic life forms. The conversion of organic energy, in the form of nutrients that include carbohydrates, amino acids and fatty acids, is subsequently released during cellular respiration, itself a Cu-dependent process, and stored as ATP that is used to drive a myriad of critical biological processes such as enzyme-catalyzed biosynthetic processes, transport of cargo around cells and across membranes, and protein degradation. The life-supporting properties of Cu incur a significant challenge to cells that must not only exquisitely balance intracellular Cu concentrations, but also chaperone this redox-active metal from its point of cellular entry to its ultimate destination so as to avert the potential for inappropriate biochemical interactions or generation of damaging reactive oxidative species (ROS). In this review we chart the travels of Cu from the extracellular milieu of fungal and mammalian cells, its path within the cytosol as inferred by the proteins and ligands that escort and deliver Cu to intracellular organelles and protein targets, and its journey throughout the body of mammals. This article is part of a Special Issue entitled: Cell Biology of Metals.

摘要

在整个进化过程中,所有生物都利用了铜(Cu)和铁(Fe)的氧化还原特性,将其作为蛋白质的辅因子或结构决定因素,这些蛋白质在生物学中发挥着关键作用。从对地球生物群落最严峻的角度来看,铜生物化学使光合生物能够利用太阳能,并将其转化为维持所有非光合生命形式生存的有机能量。以碳水化合物、氨基酸和脂肪酸等营养物质形式存在的有机能量,随后在细胞呼吸过程中释放出来,而细胞呼吸本身就是一个依赖铜的过程,并以ATP的形式储存起来,用于驱动无数关键的生物过程,如酶催化的生物合成过程、细胞内外的物质运输以及蛋白质降解。铜的生命维持特性给细胞带来了重大挑战,细胞不仅必须精确平衡细胞内铜的浓度,还必须将这种具有氧化还原活性的金属从细胞进入点护送至最终目的地,以避免不适当的生化相互作用或产生具有破坏性的活性氧化物质(ROS)的可能性。在这篇综述中,我们描绘了铜在真菌和哺乳动物细胞胞外环境中的行程,通过护送并将铜递送至细胞内细胞器和蛋白质靶点的蛋白质和配体推断出的其在细胞质中的路径以及它在哺乳动物体内的旅程。本文是名为《金属细胞生物学》特刊的一部分。

相似文献

1
Charting the travels of copper in eukaryotes from yeast to mammals.
Biochim Biophys Acta. 2012 Sep;1823(9):1580-93. doi: 10.1016/j.bbamcr.2012.02.011. Epub 2012 Feb 24.
2
Copper chaperones: personal escorts for metal ions.
J Bioenerg Biomembr. 2002 Oct;34(5):373-9. doi: 10.1023/a:1021202119942.
3
[The molecular bases for copper uptake and distribution: lessons from yeast].
Med Sci (Paris). 2008 Mar;24(3):277-83. doi: 10.1051/medsci/2008243277.
4
[Molecular mechanisms underlying copper homeostasis in Mammalian cells].
Nihon Eiseigaku Zasshi. 2014;69(2):136-45. doi: 10.1265/jjh.69.136.
5
Copper chaperones, intracellular copper trafficking proteins. Function, structure, and mechanism of action.
Biochemistry (Mosc). 2003 Aug;68(8):827-37. doi: 10.1023/a:1025740228888.
7
The mitochondrial copper chaperone COX11 has an additional role in cellular redox homeostasis.
PLoS One. 2021 Dec 17;16(12):e0261465. doi: 10.1371/journal.pone.0261465. eCollection 2021.
8
Old iron, young copper: from Mars to Venus.
Biometals. 2001 Jun;14(2):99-112. doi: 10.1023/a:1016710810701.
10
Cellular distribution of copper to superoxide dismutase involves scaffolding by membranes.
Proc Natl Acad Sci U S A. 2013 Dec 17;110(51):20491-6. doi: 10.1073/pnas.1309820110. Epub 2013 Dec 2.

引用本文的文献

1
Copper Metabolism-Related Genes as Biomarkers in Colon Adenoma and Cancer.
Int J Gen Med. 2025 Jun 10;18:3021-3043. doi: 10.2147/IJGM.S521512. eCollection 2025.
3
Transcriptional Response to Chronic Copper Stress.
J Fungi (Basel). 2025 May 13;11(5):372. doi: 10.3390/jof11050372.
4
Histone H3 cysteine 110 enhances iron metabolism and modulates replicative life span in .
Sci Adv. 2025 Apr 11;11(15):eadv4082. doi: 10.1126/sciadv.adv4082.
5
Copper in melanoma: At the crossroad of protumorigenic and anticancer roles.
Redox Biol. 2025 Apr;81:103552. doi: 10.1016/j.redox.2025.103552. Epub 2025 Feb 15.
6
Prion protein promotes copper toxicity in Wilson disease.
Nat Commun. 2025 Feb 8;16(1):1468. doi: 10.1038/s41467-025-56740-x.
7
Pulmonary lysyl oxidase expression and its role in seeding Lewis lung carcinoma cells.
Clin Exp Metastasis. 2024 Dec 23;42(1):7. doi: 10.1007/s10585-024-10325-y.
8
Copper homeostasis and neurodegenerative diseases.
Neural Regen Res. 2025 Nov 1;20(11):3124-3143. doi: 10.4103/NRR.NRR-D-24-00642. Epub 2024 Nov 13.
10
Glial controls systemic mitochondrial function, oxidative stress, and neuronal viability via copper ion homeostasis.
Proc Natl Acad Sci U S A. 2024 Sep 24;121(39):e2320611121. doi: 10.1073/pnas.2320611121. Epub 2024 Sep 17.

本文引用的文献

1
The human ZIP4 transporter has two distinct binding affinities and mediates transport of multiple transition metals.
Biochemistry. 2012 Feb 7;51(5):963-73. doi: 10.1021/bi201553p. Epub 2012 Jan 24.
2
Immune cells and hepatocytes express glycosylphosphatidylinositol-anchored ceruloplasmin at their cell surface.
Blood Cells Mol Dis. 2012 Feb 15;48(2):110-20. doi: 10.1016/j.bcmd.2011.11.005. Epub 2011 Dec 16.
3
Iron, copper, and zinc transport: inhibition of divalent metal transporter 1 (DMT1) and human copper transporter 1 (hCTR1) by shRNA.
Biol Trace Elem Res. 2012 May;146(2):281-6. doi: 10.1007/s12011-011-9243-2. Epub 2011 Nov 9.
4
Is the Western diet adequate in copper?
J Trace Elem Med Biol. 2011 Dec;25(4):204-12. doi: 10.1016/j.jtemb.2011.08.146. Epub 2011 Oct 5.
6
Exploration of the copper-related compensatory response in the Belgrade rat model of genetic iron deficiency.
Am J Physiol Gastrointest Liver Physiol. 2011 Nov;301(5):G877-86. doi: 10.1152/ajpgi.00261.2011. Epub 2011 Aug 18.
7
Hammering out details: regulating metal levels in eukaryotes.
Trends Biochem Sci. 2011 Oct;36(10):524-31. doi: 10.1016/j.tibs.2011.07.002. Epub 2011 Aug 16.
8
Mfc1 is a novel forespore membrane copper transporter in meiotic and sporulating cells.
J Biol Chem. 2011 Sep 30;286(39):34356-72. doi: 10.1074/jbc.M111.280396. Epub 2011 Aug 2.
9
The copper regulon of the human fungal pathogen Cryptococcus neoformans H99.
Mol Microbiol. 2011 Sep;81(6):1560-76. doi: 10.1111/j.1365-2958.2011.07794.x. Epub 2011 Aug 23.
10
Regulation of copper homeostasis by Cuf1 associates with its subcellular localization in the pathogenic yeast Cryptococcus neoformans H99.
FEMS Yeast Res. 2011 Aug;11(5):440-8. doi: 10.1111/j.1567-1364.2011.00733.x. Epub 2011 May 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验