Suppr超能文献

从基础研究到转化医学:OX40 激动剂的故事。

Science gone translational: the OX40 agonist story.

机构信息

Providence Cancer Research Center, Earle A. Chiles Research Institute, Providence Portland Medical Center, Portland, OR 97213, USA.

出版信息

Immunol Rev. 2011 Nov;244(1):218-31. doi: 10.1111/j.1600-065X.2011.01069.x.

Abstract

OX40 (CD134) is a tumor necrosis factor (TNF) receptor expressed primarily on activated CD4(+) and CD8(+) T cells and transmits a potent costimulatory signal when engaged. OX40 is transiently expressed after T-cell receptor engagement and is upregulated on the most recently antigen-activated T cells within inflammatory lesions (e.g. sites of autoimmune destruction and on tumor-infiltrating lymphocytes). Hence, it is an attractive target to modulate immune responses: OX40 blocking agents to inhibit undesirable inflammation or OX40 agonists to enhance immune responses. In regards to this review, OX40 agonists enhance anti-tumor immunity, which leads to therapeutic effects in mouse tumor models. A team of laboratory and clinical scientists at the Providence Cancer Center has collaborated to bring the preclinical observations in cancer models from the bench to the bedside. This review describes the journey from in vitro experiments through preclinical mouse models to the successful translation of the first OX40 agonist to the clinic for the treatment of patients with cancer.

摘要

OX40(CD134)是一种肿瘤坏死因子(TNF)受体,主要表达于活化的 CD4(+)和 CD8(+)T 细胞上,当与之结合时会传递一种强烈的共刺激信号。OX40 在 T 细胞受体结合后短暂表达,并在上皮内炎症病灶(如自身免疫破坏部位和肿瘤浸润淋巴细胞)中最近被抗原激活的 T 细胞上上调。因此,它是调节免疫反应的一个有吸引力的靶点:OX40 阻断剂抑制不必要的炎症,或 OX40 激动剂增强免疫反应。关于这篇综述,OX40 激动剂增强了抗肿瘤免疫,从而在小鼠肿瘤模型中产生了治疗效果。普罗维登斯癌症中心的一组实验室和临床科学家合作,将癌症模型中的临床前观察结果从实验室转化到床边。这篇综述描述了从体外实验到临床前小鼠模型,再到成功将第一种 OX40 激动剂转化为治疗癌症患者的临床应用的历程。

相似文献

1
Science gone translational: the OX40 agonist story.
Immunol Rev. 2011 Nov;244(1):218-31. doi: 10.1111/j.1600-065X.2011.01069.x.
2
OX40 is a potent immune-stimulating target in late-stage cancer patients.
Cancer Res. 2013 Dec 15;73(24):7189-7198. doi: 10.1158/0008-5472.CAN-12-4174. Epub 2013 Oct 31.
3
PLGA-nanoparticle mediated delivery of anti-OX40 monoclonal antibody enhances anti-tumor cytotoxic T cell responses.
Cell Immunol. 2014 Feb;287(2):91-9. doi: 10.1016/j.cellimm.2014.01.003. Epub 2014 Jan 13.
4
Roscovitine suppresses CD4+ T cells and T cell-mediated experimental uveitis.
PLoS One. 2013 Nov 18;8(11):e81154. doi: 10.1371/journal.pone.0081154. eCollection 2013.
5
Anti-OX40 (CD134) administration to nonhuman primates: immunostimulatory effects and toxicokinetic study.
J Immunother. 2006 Nov-Dec;29(6):575-85. doi: 10.1097/01.cji.0000211319.00031.fc.
6
Anti-OX40 Antibody Directly Enhances The Function of Tumor-Reactive CD8 T Cells and Synergizes with PI3Kβ Inhibition in PTEN Loss Melanoma.
Clin Cancer Res. 2019 Nov 1;25(21):6406-6416. doi: 10.1158/1078-0432.CCR-19-1259. Epub 2019 Aug 1.
7
Generation and characterization of a high-affinity chimeric anti-OX40 antibody with potent antitumor activity.
FEBS Lett. 2021 Jun;595(11):1587-1603. doi: 10.1002/1873-3468.14079. Epub 2021 Apr 28.
8
A STING Agonist Given with OX40 Receptor and PD-L1 Modulators Primes Immunity and Reduces Tumor Growth in Tolerized Mice.
Cancer Immunol Res. 2017 Jun;5(6):468-479. doi: 10.1158/2326-6066.CIR-16-0284. Epub 2017 May 8.
9
Signaling through OX40 enhances antitumor immunity.
Semin Oncol. 2010 Oct;37(5):524-32. doi: 10.1053/j.seminoncol.2010.09.013.

引用本文的文献

1
Flow cytometric features of lymphoid subsets in healthy and diseased cats.
Front Vet Sci. 2025 Aug 1;12:1640229. doi: 10.3389/fvets.2025.1640229. eCollection 2025.
2
INBRX-106: a hexavalent OX40 agonist that drives superior antitumor responses via optimized receptor clustering.
J Immunother Cancer. 2025 May 21;13(5):e011524. doi: 10.1136/jitc-2025-011524.
3
The synergistic antitumor effect of Karanahan technology and vaccination using anti-OX40 antibodies.
Oncol Res. 2025 Apr 18;33(5):1229-1248. doi: 10.32604/or.2025.059411. eCollection 2025.
4
Generation and characterization of OX40-ligand fusion protein that agonizes OX40 on T-Lymphocytes.
Front Immunol. 2025 Jan 10;15:1473815. doi: 10.3389/fimmu.2024.1473815. eCollection 2024.
5
Tumor-infiltrating mast cells confer resistance to immunotherapy in pancreatic cancer.
iScience. 2024 Sep 30;27(11):111085. doi: 10.1016/j.isci.2024.111085. eCollection 2024 Nov 15.
7
Plasmid DNA ionisable lipid nanoparticles as non-inert carriers and potent immune activators for cancer immunotherapy.
J Control Release. 2024 May;369:251-265. doi: 10.1016/j.jconrel.2024.03.018. Epub 2024 Mar 29.
8
A novel risk score system based on immune subtypes for identifying optimal mRNA vaccination population in hepatocellular carcinoma.
Cell Oncol (Dordr). 2024 Aug;47(4):1205-1220. doi: 10.1007/s13402-024-00921-1. Epub 2024 Feb 5.
10
CD137 (4-1BB) requires physically associated cIAPs for signal transduction and antitumor effects.
Sci Adv. 2023 Aug 18;9(33):eadf6692. doi: 10.1126/sciadv.adf6692.

本文引用的文献

1
Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia.
N Engl J Med. 2011 Aug 25;365(8):725-33. doi: 10.1056/NEJMoa1103849. Epub 2011 Aug 10.
2
Sipuleucel-T in patients with metastatic castration-resistant prostate cancer: an insight for oncologists.
Ther Adv Med Oncol. 2011 Mar;3(2):101-8. doi: 10.1177/1758834010397692.
3
4
Immune effects of trastuzumab.
J Cancer. 2011;2:317-23. doi: 10.7150/jca.2.317. Epub 2011 May 25.
6
Impact of tumour volume on the potential efficacy of therapeutic vaccines.
Curr Oncol. 2011 Jun;18(3):e150-7. doi: 10.3747/co.v18i3.783.
7
Immunomodulatory effects of cyclophosphamide and implementations for vaccine design.
Semin Immunopathol. 2011 Jul;33(4):369-83. doi: 10.1007/s00281-011-0245-0. Epub 2011 May 25.
9
Anti-TIM3 antibody promotes T cell IFN-γ-mediated antitumor immunity and suppresses established tumors.
Cancer Res. 2011 May 15;71(10):3540-51. doi: 10.1158/0008-5472.CAN-11-0096. Epub 2011 Mar 23.
10
The TNFR family members OX40 and CD27 link viral virulence to protective T cell vaccines in mice.
J Clin Invest. 2011 Jan;121(1):296-307. doi: 10.1172/JCI42056. Epub 2010 Dec 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验