Suppr超能文献

肿瘤相关成纤维细胞中的线粒体氧化应激驱动乳酸生成,促进乳腺癌肿瘤生长:了解衰老与癌症的联系。

Mitochondrial oxidative stress in cancer-associated fibroblasts drives lactate production, promoting breast cancer tumor growth: understanding the aging and cancer connection.

机构信息

The Jefferson Stem Cell Biology and Regenerative Medicine Center, Department of Stem Cell Biology and Regenerative Medicine, Thomas Jefferson University, Philadelphia, PA, USA.

出版信息

Cell Cycle. 2011 Dec 1;10(23):4065-73. doi: 10.4161/cc.10.23.18254.

Abstract

Increasing chronological age is the most significant risk factor for cancer. Recently, we proposed a new paradigm for understanding the role of the aging and the tumor microenvironment in cancer onset. In this model, cancer cells induce oxidative stress in adjacent stromal fibroblasts. This, in turn, causes several changes in the phenotype of the fibroblast including mitochondrial dysfunction, hydrogen peroxide production, and aerobic glycolysis, resulting in high levels of L-lactate production. L-lactate is then transferred from these glycolytic fibroblasts to adjacent epithelial cancer cells and used as "fuel" for oxidative mitochondrial metabolism.  Here, we created a new pre-clinical model system to directly test this hypothesis experimentally. To synthetically generate glycolytic fibroblasts, we genetically-induced mitochondrial dysfunction by knocking down TFAM using an sh-RNA approach.  TFAM is mitochondrial transcription factor A, which is important in functionally maintaining the mitochondrial respiratory chain. Interestingly, TFAM-deficient fibroblasts showed evidence of mitochondrial dysfunction and oxidative stress, with the loss of certain mitochondrial respiratory chain components, and the over-production of hydrogen peroxide and L-lactate. Thus, TFAM-deficient fibroblasts underwent metabolic reprogramming towards aerobic glycolysis.  Most importantly, TFAM-deficient fibroblasts significantly promoted tumor growth, as assayed using a human breast cancer (MDA-MB-231) xenograft model. These increases in glycolytic fibroblast driven tumor growth were independent of tumor angiogenesis. Mechanistically, TFAM-deficient fibroblasts increased the mitochondrial activity of adjacent epithelial cancer cells in a co-culture system, as seen using MitoTracker. Finally, TFAM-deficient fibroblasts also showed a loss of caveolin-1 (Cav-1), a known breast cancer stromal biomarker. Loss of stromal fibroblast Cav-1 is associated with early tumor recurrence, metastasis, and treatment failure, resulting in poor clinical outcome in breast cancer patients. Thus, this new experimental model system, employing glycolytic fibroblasts, may be highly clinically relevant. These studies also have implications for understanding the role of hydrogen peroxide production in oxidative damage and "host cell aging," in providing a permissive metabolic microenvironment for promoting and sustaining tumor growth.

摘要

年龄的增长是癌症的最重要的危险因素。最近,我们提出了一个理解衰老和肿瘤微环境在癌症发生中的作用的新范式。在这个模型中,癌细胞会在相邻的基质成纤维细胞中诱导氧化应激。这反过来又导致成纤维细胞表型发生几种变化,包括线粒体功能障碍、过氧化氢产生和有氧糖酵解,导致高水平的 L-乳酸产生。然后,L-乳酸从这些糖酵解成纤维细胞转移到相邻的上皮癌细胞,并用作氧化线粒体代谢的“燃料”。在这里,我们创建了一个新的临床前模型系统来直接实验验证这个假设。为了通过敲低 shRNA 方法来合成诱导糖酵解成纤维细胞,我们在遗传上诱导了线粒体功能障碍。TFAM 是线粒体转录因子 A,它在功能上维持线粒体呼吸链的重要组成部分。有趣的是,TFAM 缺陷型成纤维细胞表现出线粒体功能障碍和氧化应激的证据,某些线粒体呼吸链成分丢失,过氧化氢和 L-乳酸过度产生。因此,TFAM 缺陷型成纤维细胞发生代谢重编程为有氧糖酵解。最重要的是,TFAM 缺陷型成纤维细胞显著促进了肿瘤生长,如用人乳腺癌(MDA-MB-231)异种移植模型检测到的那样。这种由 TFAM 缺陷型成纤维细胞驱动的肿瘤生长的增加与肿瘤血管生成无关。在机制上,在共培养系统中,TFAM 缺陷型成纤维细胞增加了相邻上皮癌细胞的线粒体活性,如使用 MitoTracker 观察到的那样。最后,TFAM 缺陷型成纤维细胞也表现出 caveolin-1(Cav-1)的丢失,Cav-1 是一种已知的乳腺癌基质生物标志物。基质成纤维细胞 Cav-1 的丢失与早期肿瘤复发、转移和治疗失败相关,导致乳腺癌患者的临床预后不良。因此,这个新的实验模型系统,使用糖酵解成纤维细胞,可能具有很高的临床相关性。这些研究也为理解过氧化氢产生在氧化损伤和“宿主细胞衰老”中的作用提供了启示,为促进和维持肿瘤生长提供了一个允许的代谢微环境。

相似文献

9
Tumor microenvironment and metabolic synergy in breast cancers: critical importance of mitochondrial fuels and function.
Semin Oncol. 2014 Apr;41(2):195-216. doi: 10.1053/j.seminoncol.2014.03.002. Epub 2014 Mar 5.

引用本文的文献

4
The Regulation of Cellular Senescence in Cancer.
Biomolecules. 2025 Mar 20;15(3):448. doi: 10.3390/biom15030448.
5
The dual role of cellular senescence in human tumor progression and therapy.
MedComm (2020). 2024 Aug 19;5(9):e695. doi: 10.1002/mco2.695. eCollection 2024 Sep.
6
7
8
A bibliometric and visual analysis of cancer-associated fibroblasts.
Front Immunol. 2023 Dec 19;14:1323115. doi: 10.3389/fimmu.2023.1323115. eCollection 2023.
9
Transcription factors in fibroblast plasticity and CAF heterogeneity.
J Exp Clin Cancer Res. 2023 Dec 20;42(1):347. doi: 10.1186/s13046-023-02934-4.

本文引用的文献

2
Caveolin-1: would-be Achilles' heel of tumor microenvironment?
Cell Cycle. 2011 Oct 15;10(20):3431. doi: 10.4161/cc.10.20.17648.
10
Mitochondrial targeted catalase suppresses invasive breast cancer in mice.
BMC Cancer. 2011 May 23;11:191. doi: 10.1186/1471-2407-11-191.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验