Suppr超能文献

肠类器官培养物中来源于鼠小肠的隐窝上皮细胞中的功能性 Cftr。

Functional Cftr in crypt epithelium of organotypic enteroid cultures from murine small intestine.

机构信息

Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA.

出版信息

Am J Physiol Cell Physiol. 2012 May 15;302(10):C1492-503. doi: 10.1152/ajpcell.00392.2011. Epub 2012 Mar 7.

Abstract

Physiological studies of intact crypt epithelium have been limited by problems of accessibility in vivo and dedifferentiation in standard primary culture. Investigations of murine intestinal stem cells have recently yielded a primary intestinal culture in three-dimensional gel suspension that recapitulates crypt structure and epithelial differentiation (Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N, Stange DE, Van Es JH, Abo A, Kujala P, Peters PJ, Clevers H. Nature 459: 262-265, 2009). We investigated the utility of murine intestinal crypt cultures (termed "enteroids") for physiological studies of crypt epithelium by focusing on the transport activity of the cystic fibrosis transmembrane conductance regulator Cftr. Enteroids had multiple crypts with well-differentiated goblet and Paneth cells that degranulated on exposure to the muscarinic agonist carbachol. Modified growth medium provided a crypt proliferation rate, as measured by 5-ethynyl-2'-deoxyuridine labeling, which was similar to proliferation in vivo. Immunoblots demonstrated equivalent Cftr expression in comparisons of freshly isolated crypts with primary and passage 1 enteroids. Apparent enteroid differences in mRNA expression of other transporters were primarily associated with villous epithelial contamination of freshly isolated crypts. Microelectrode analysis revealed cAMP-stimulated membrane depolarization in enteroid epithelium from wild-type (WT) but not Cftr knockout (KO) mice. Morphological and microfluorimetric studies, respectively, demonstrated Cftr-dependent cell shrinkage and lower intracellular pH in WT enteroid epithelium in contrast to Cftr KO epithelium or WT epithelium treated with Cftr inhibitor 172. We conclude that crypt epithelium of murine enteroids exhibit Cftr expression and activity that recapitulates crypt epithelium in vivo. Enteroids provide a primary culture model that is suitable for physiological studies of regenerating crypt epithelium.

摘要

完整隐窝上皮的生理学研究受到体内可及性问题和标准原代培养中去分化的限制。最近,对小鼠肠道干细胞的研究产生了一种在三维凝胶悬浮中的原代肠道培养物,该培养物再现了隐窝结构和上皮分化(Sato T、Vries RG、Snippert HJ、van de Wetering M、Barker N、Stange DE、Van Es JH、Abo A、Kujala P、Peters PJ、Clevers H. Nature 459:262-265, 2009)。我们通过关注囊性纤维化跨膜电导调节剂 Cftr 的转运活性,研究了小鼠肠道隐窝培养物(称为“肠类器官”)在隐窝上皮生理学研究中的应用。肠类器官具有多个隐窝,其中杯状细胞和潘氏细胞分化良好,在暴露于毒蕈碱激动剂卡巴胆碱时会脱颗粒。改良的生长培养基提供了一种隐窝增殖率,如通过 5-乙炔基-2'-脱氧尿苷标记测量,与体内增殖相似。免疫印迹显示,与新鲜分离的隐窝相比,新鲜分离的隐窝与原代和第 1 代肠类器官的 Cftr 表达相当。其他转运体的 mRNA 表达中明显的肠类器官差异主要与新鲜分离的隐窝中绒毛上皮的污染有关。微电极分析显示,cAMP 刺激 WT 而不是 Cftr 敲除(KO)小鼠的肠类器官上皮的膜去极化。形态学和微荧光研究分别显示,WT 肠类器官上皮中 Cftr 依赖性细胞收缩和较低的细胞内 pH 与 Cftr KO 上皮或用 Cftr 抑制剂 172 处理的 WT 上皮形成对比。我们得出结论,肠类器官的隐窝上皮表现出 Cftr 的表达和活性,再现了体内隐窝上皮。肠类器官提供了一种适合于再生隐窝上皮的生理学研究的原代培养模型。

相似文献

1
Functional Cftr in crypt epithelium of organotypic enteroid cultures from murine small intestine.
Am J Physiol Cell Physiol. 2012 May 15;302(10):C1492-503. doi: 10.1152/ajpcell.00392.2011. Epub 2012 Mar 7.
2
Increased activity of epithelial Cdc42 Rho GTPase and tight junction permeability in the Cftr knockout intestine.
Am J Physiol Gastrointest Liver Physiol. 2024 Oct 1;327(4):G545-G557. doi: 10.1152/ajpgi.00211.2022. Epub 2024 Aug 6.
3
Cellular chloride and bicarbonate retention alters intracellular pH regulation in Cftr KO crypt epithelium.
Am J Physiol Gastrointest Liver Physiol. 2016 Jan 15;310(2):G70-80. doi: 10.1152/ajpgi.00236.2015. Epub 2015 Nov 5.
4
Physiological relevance of cell-specific distribution patterns of CFTR, NKCC1, NBCe1, and NHE3 along the crypt-villus axis in the intestine.
Am J Physiol Gastrointest Liver Physiol. 2011 Jan;300(1):G82-98. doi: 10.1152/ajpgi.00245.2010. Epub 2010 Oct 28.
5
Cftr Modulates Wnt/β-Catenin Signaling and Stem Cell Proliferation in Murine Intestine.
Cell Mol Gastroenterol Hepatol. 2017 Dec 7;5(3):253-271. doi: 10.1016/j.jcmgh.2017.11.013. eCollection 2018 Mar.
6
Goblet cell hyperplasia is not epithelial-autonomous in the Cftr knockout intestine.
Am J Physiol Gastrointest Liver Physiol. 2022 Feb 1;322(2):G282-G293. doi: 10.1152/ajpgi.00290.2021. Epub 2021 Dec 8.
7
Activation of cAMP-dependent C1- currents in guinea-pig paneth cells without relevant evidence for CFTR expression.
J Physiol. 1998 Nov 1;512 ( Pt 3)(Pt 3):765-77. doi: 10.1111/j.1469-7793.1998.765bd.x.
8
Human Enteroids as a Model of Upper Small Intestinal Ion Transport Physiology and Pathophysiology.
Gastroenterology. 2016 Mar;150(3):638-649.e8. doi: 10.1053/j.gastro.2015.11.047. Epub 2015 Dec 8.
9
cAMP inhibition of murine intestinal Na/H exchange requires CFTR-mediated cell shrinkage of villus epithelium.
Gastroenterology. 2003 Oct;125(4):1148-63. doi: 10.1016/s0016-5085(03)01212-5.
10
Chloride conductance of CFTR facilitates basal Cl-/HCO3- exchange in the villous epithelium of intact murine duodenum.
Am J Physiol Gastrointest Liver Physiol. 2005 Jun;288(6):G1241-51. doi: 10.1152/ajpgi.00493.2004. Epub 2005 Jan 13.

引用本文的文献

1
Functional maturation of preterm intestinal epithelium through CFTR activation.
Commun Biol. 2025 Apr 2;8(1):540. doi: 10.1038/s42003-025-07944-w.
2
A Decade of Organoid Research: Progress and Challenges in the Field of Organoid Technology.
ACS Omega. 2024 Jun 29;9(28):30087-30096. doi: 10.1021/acsomega.4c03683. eCollection 2024 Jul 16.
3
Intracellular pH dynamics regulates intestinal stem cell lineage specification.
Nat Commun. 2023 Jun 23;14(1):3745. doi: 10.1038/s41467-023-39312-9.
5
Crosslink between SARS-CoV-2 replication and cystic fibrosis hallmarks.
Front Microbiol. 2023 May 11;14:1162470. doi: 10.3389/fmicb.2023.1162470. eCollection 2023.
6
Stem Cell Therapy in Inflammatory Bowel Disease: A Review of Achievements and Challenges.
J Inflamm Res. 2023 May 16;16:2089-2119. doi: 10.2147/JIR.S400447. eCollection 2023.
7
The NHE3 Inhibitor Tenapanor Prevents Intestinal Obstructions in CFTR-Deleted Mice.
Int J Mol Sci. 2022 Sep 1;23(17):9993. doi: 10.3390/ijms23179993.
8
CFTR and Gastrointestinal Cancers: An Update.
J Pers Med. 2022 May 25;12(6):868. doi: 10.3390/jpm12060868.
9
Human organoids in basic research and clinical applications.
Signal Transduct Target Ther. 2022 May 24;7(1):168. doi: 10.1038/s41392-022-01024-9.
10
Goblet cell hyperplasia is not epithelial-autonomous in the Cftr knockout intestine.
Am J Physiol Gastrointest Liver Physiol. 2022 Feb 1;322(2):G282-G293. doi: 10.1152/ajpgi.00290.2021. Epub 2021 Dec 8.

本文引用的文献

1
Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts.
Nature. 2011 Jan 20;469(7330):415-8. doi: 10.1038/nature09637. Epub 2010 Nov 28.
2
Native and recombinant Slc26a3 (downregulated in adenoma, Dra) do not exhibit properties of 2Cl-/1HCO3- exchange.
Am J Physiol Cell Physiol. 2011 Feb;300(2):C276-86. doi: 10.1152/ajpcell.00366.2010. Epub 2010 Nov 10.
3
Physiological relevance of cell-specific distribution patterns of CFTR, NKCC1, NBCe1, and NHE3 along the crypt-villus axis in the intestine.
Am J Physiol Gastrointest Liver Physiol. 2011 Jan;300(1):G82-98. doi: 10.1152/ajpgi.00245.2010. Epub 2010 Oct 28.
4
Phosphatidic acid is a pH biosensor that links membrane biogenesis to metabolism.
Science. 2010 Aug 27;329(5995):1085-8. doi: 10.1126/science.1191026.
5
Dynamic regulation of CFTR bicarbonate permeability by [Cl-]i and its role in pancreatic bicarbonate secretion.
Gastroenterology. 2010 Aug;139(2):620-31. doi: 10.1053/j.gastro.2010.04.004. Epub 2010 Apr 14.
6
Sensors and regulators of intracellular pH.
Nat Rev Mol Cell Biol. 2010 Jan;11(1):50-61. doi: 10.1038/nrm2820. Epub 2009 Dec 9.
7
Sustained in vitro intestinal epithelial culture within a Wnt-dependent stem cell niche.
Nat Med. 2009 Jun;15(6):701-6. doi: 10.1038/nm.1951. Epub 2009 Apr 27.
8
Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche.
Nature. 2009 May 14;459(7244):262-5. doi: 10.1038/nature07935. Epub 2009 Mar 29.
9
Role of down-regulated in adenoma anion exchanger in HCO3- secretion across murine duodenum.
Gastroenterology. 2009 Mar;136(3):893-901. doi: 10.1053/j.gastro.2008.11.016. Epub 2008 Nov 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验