iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal.
Methods. 2012 Mar;56(3):452-60. doi: 10.1016/j.ymeth.2012.03.005. Epub 2012 Mar 14.
Central nervous system (CNS) disorders remain a formidable challenge for the development of efficient therapies. Cell and gene therapy approaches are promising alternatives that can have a tremendous impact by treating the causes of the disease rather than the symptoms, providing specific targeting and prolonged duration of action. Hampering translation of gene-based therapeutic treatments of neurodegenerative diseases from experimental to clinical gene therapy is the lack of valid and reliable pre-clinical models that can contribute to evaluate feasibility and safety. Herein we describe a robust and reproducible methodology for the generation of 3D in vitro models of the human CNS following a systematic technological approach based on stirred culture systems. We took advantage of human midbrain-derived neural progenitor cells (hmNPCs) capability to differentiate into the various neural phenotypes and of their commitment to the dopaminergic lineage to generate differentiated neurospheres enriched in dopaminergic neurons. Furthermore, we describe a protocol for efficient gene transfer into differentiated neurospheres using CAV-2 viral vectors and stable expression of the transgene for at least 10 days. CAV-2 vectors, derived from canine adenovirus type 2, are promising tools to understand and treat neurodegenerative diseases, in particular Parkinson's disease. CAV-2 vectors preferentially transduce neurons and have an impressive level of axonal retrograde transport in vivo. Our model provides a practical and versatile in vitro approach to study the CNS in a 3D cellular context. With the successful differentiation and subsequent genetic modification of neurospheres we are increasing the collection of tools available for neuroscience research and contributing for the implementation and widespread utilization of 3D cellular CNS models. These can be applied to study neurodegenerative diseases such as Parkinson's disease; to study the interaction of viral vectors of therapeutic potential within human neural cell populations, thus enabling the introduction of specific therapeutic genes for treatment of CNS pathologies; to study the fate and effect of delivered therapeutic genes; to study toxicological effects. Furthermore these methodologies may be extended to other sources of human neural stem cells, such as human pluripotent stem cells, including patient-derived induced pluripotent stem cells.
中枢神经系统(CNS)疾病仍然是开发有效治疗方法的巨大挑战。细胞和基因治疗方法是很有前途的替代方法,可以通过治疗疾病的原因而不是症状产生巨大影响,提供特定的靶向和延长作用持续时间。将基于基因的神经退行性疾病治疗方法从实验性基因治疗转化为临床基因治疗的主要障碍是缺乏有效的和可靠的临床前模型,这些模型可以帮助评估可行性和安全性。在此,我们描述了一种基于搅拌培养系统的系统技术方法,生成人类中枢神经系统 3D 体外模型的强大且可重复的方法。我们利用人脑中脑源性神经祖细胞(hmNPCs)分化为各种神经表型的能力,以及它们向多巴胺能谱系的定向分化能力,生成富含多巴胺能神经元的分化神经球。此外,我们描述了一种使用 CAV-2 病毒载体将基因高效转入分化神经球并稳定表达转基因至少 10 天的方案。CAV-2 载体来源于犬腺病毒 2 型,是研究神经退行性疾病(特别是帕金森病)的有前途的工具。CAV-2 载体优先转导神经元,并在体内具有令人印象深刻的轴突逆行运输水平。我们的模型提供了一种实用且多功能的 3D 细胞内方法来研究中枢神经系统。通过神经球的成功分化和随后的基因修饰,我们增加了神经科学研究可用的工具集,并为 3D 细胞中枢神经系统模型的实施和广泛应用做出了贡献。这些模型可用于研究帕金森病等神经退行性疾病;研究具有治疗潜力的病毒载体在人类神经细胞群体中的相互作用,从而能够引入用于治疗中枢神经系统病变的特定治疗基因;研究传递的治疗基因的命运和影响;研究毒性作用。此外,这些方法可以扩展到其他来源的人类神经干细胞,如人类多能干细胞,包括患者来源的诱导多能干细胞。