Suppr超能文献

结核病的化学疗法:过去、现在和未来。

The chemotherapy of tuberculosis: past, present and future.

机构信息

Department of Cellular & Molecular Medicine, St George's Hospital Medical School, London, UK.

出版信息

Int J Tuberc Lung Dis. 2012 Jun;16(6):724-32. doi: 10.5588/ijtld.12.0083.

Abstract

The history of the development of modern chemotherapy for tuberculosis (TB), largely due to the British Medical Research Council, is first described. There is a current need to shorten the duration of treatment and to prevent and cure drug-resistant disease. These aims will only be achieved if the way in which multidrug treatment prevents resistance from emerging and the reasons for the very slow response to chemotherapy are understood. Consideration of mutation rates to resistance and the size of bacterial populations in lesions makes it very unlikely that resistance would emerge spontaneously, leaving irregularity in drug taking and inadequate dosage as the main reasons for its occurrence. Slow response to treatment seems due to the presence of persister populations whose natural history is only partly known. In the future, we need to explore the persister state in patients and in experimental murine TB, and to take it into account in the design of future mouse experiments. The activity of rifamycins and pyrazinamide is being increased by a rise in rifamycin dosage and the inhalation of pyrazinoic acid. New drugs are gradually being brought into use, initially TMC207 and the nitroimadazoles, PA824 and OPC67683. They will need to be tested in new combination regimens for drug-susceptible and multi- and extensively drug-resistant disease.

摘要

本文首先描述了由于英国医学研究理事会的努力,现代结核病(TB)化疗发展的历史。目前需要缩短治疗时间并预防和治疗耐药性疾病。只有了解多药治疗如何防止耐药性的出现以及对化疗反应非常缓慢的原因,才能实现这些目标。考虑到耐药性的突变率和病变中细菌群体的大小,耐药性几乎不可能自发出现,不规则的药物服用和剂量不足是其发生的主要原因。治疗反应缓慢似乎是由于存在持续存在的细菌群体,而其自然史尚不完全清楚。在未来,我们需要在患者和实验性鼠型结核病中探索持续存在的状态,并在未来的小鼠实验设计中考虑到这一点。通过增加利福霉素剂量和吸入吡嗪酸,提高利福霉素类和吡嗪酰胺的活性。新的药物逐渐被引入使用,最初是 TMC207 和硝基咪唑类药物、PA824 和 OPC67683。它们将需要在新的药物敏感和多药及广泛耐药疾病的联合治疗方案中进行测试。

相似文献

1
The chemotherapy of tuberculosis: past, present and future.
Int J Tuberc Lung Dis. 2012 Jun;16(6):724-32. doi: 10.5588/ijtld.12.0083.
2
Regimens to treat multidrug-resistant tuberculosis: past, present and future perspectives.
Eur Respir Rev. 2019 May 29;28(152). doi: 10.1183/16000617.0035-2019. Print 2019 Jun 30.
3
[New tuberculosis drugs in resistant and multiresistant tuberculosis].
Med Clin (Barc). 2013 Oct 5;141(7):306-13. doi: 10.1016/j.medcli.2013.01.039. Epub 2013 Mar 26.
4
New drugs for the treatment of tuberculosis: hope and reality.
Int J Tuberc Lung Dis. 2012 Aug;16(8):1005-14. doi: 10.5588/ijtld.12.0277.
6
Advances in the treatment of tuberculosis.
Clin Pharmacol Ther. 2007 Nov;82(5):595-600. doi: 10.1038/sj.clpt.6100362. Epub 2007 Sep 26.
7
Synthetic investigational new drugs for the treatment of tuberculosis.
Expert Opin Investig Drugs. 2016;25(2):183-93. doi: 10.1517/13543784.2016.1121993. Epub 2015 Dec 14.
8
Tuberculosis, drug resistance, and the history of modern medicine.
N Engl J Med. 2012 Sep 6;367(10):931-6. doi: 10.1056/NEJMra1205429.
9
Drug-resistant tuberculosis in Zhejiang Province, China: an updated analysis of time trends, 1999-2013.
Glob Health Action. 2017;10(1):1293925. doi: 10.1080/16549716.2017.1293925.
10
Isoniazid mono-resistant tuberculosis: Time to take it seriously.
Indian J Tuberc. 2019 Apr;66(2):247-252. doi: 10.1016/j.ijtb.2019.04.001. Epub 2019 Apr 9.

引用本文的文献

1
Genetic determinants of adaptation and drug efficacy during stationary phase growth.
Microbiol Spectr. 2025 Sep 2;13(9):e0109625. doi: 10.1128/spectrum.01096-25. Epub 2025 Aug 12.
3
Novel mRNA vaccines induce potent immunogenicity and afford protection against tuberculosis.
Front Immunol. 2025 Feb 13;16:1540359. doi: 10.3389/fimmu.2025.1540359. eCollection 2025.
4
Pubic Symphysis Tuberculosis Recurrence - A Rare Case Report and Literature Review.
J Orthop Case Rep. 2023 Oct;13(10):163-167. doi: 10.13107/jocr.2023.v13.i10.3976.
7
Resistance-resistant antibacterial treatment strategies.
Front Antibiot. 2023;2. doi: 10.3389/frabi.2023.1093156. Epub 2023 Jan 30.
8
design of a promiscuous chimeric multi-epitope vaccine against .
Comput Struct Biotechnol J. 2023 Jan 16;21:991-1004. doi: 10.1016/j.csbj.2023.01.019. eCollection 2023.
9
The Subunit AEC/BC02 Vaccine Combined with Antibiotics Provides Protection in -Infected Guinea Pigs.
Vaccines (Basel). 2022 Dec 16;10(12):2164. doi: 10.3390/vaccines10122164.
10
Paediatric formulations for the treatment of drug resistant TB: closing the gaps.
Int J Tuberc Lung Dis. 2022 Dec 1;26(12):1097-1100. doi: 10.5588/ijtld.22.0498.

本文引用的文献

1
Pharmacokinetic/pharmacodynamic parameters and the choice of high-dosage rifamycins.
Int J Tuberc Lung Dis. 2012 Sep;16(9):1186-9. doi: 10.5588/ijtld.11.0818. Epub 2012 Jul 12.
2
Multidrug-resistant tuberculosis not due to noncompliance but to between-patient pharmacokinetic variability.
J Infect Dis. 2011 Dec 15;204(12):1951-9. doi: 10.1093/infdis/jir658. Epub 2011 Oct 21.
3
Pyrazinamide inhibits trans-translation in Mycobacterium tuberculosis.
Science. 2011 Sep 16;333(6049):1630-2. doi: 10.1126/science.1208813. Epub 2011 Aug 11.
5
Early bactericidal activity of delamanid (OPC-67683) in smear-positive pulmonary tuberculosis patients.
Int J Tuberc Lung Dis. 2011 Jul;15(7):949-54. doi: 10.5588/ijtld.10.0616.
6
Molecular basis and mechanisms of drug resistance in Mycobacterium tuberculosis: classical and new drugs.
J Antimicrob Chemother. 2011 Jul;66(7):1417-30. doi: 10.1093/jac/dkr173. Epub 2011 May 9.
7
Spontaneous emergence of multiple drug resistance in tuberculosis before and during therapy.
PLoS One. 2011 Mar 30;6(3):e18327. doi: 10.1371/journal.pone.0018327.
8
Polyneuropathy, anti-tuberculosis treatment and the role of pyridoxine in the HIV/AIDS era: a systematic review.
Int J Tuberc Lung Dis. 2011 Jun;15(6):722-8. doi: 10.5588/ijtld.10.0284. Epub 2011 Apr 7.
9
Dormant ovoid cells of Mycobacterium tuberculosis are formed in response to gradual external acidification.
Tuberculosis (Edinb). 2011 Mar;91(2):146-54. doi: 10.1016/j.tube.2010.12.006. Epub 2011 Jan 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验