Division of Applied Life Science (BK21 Program) and PMBBRC, Gyeongsang National University, 501 Jinju-daero, Jinju 660-701, Korea.
Mol Plant. 2013 Mar;6(2):323-36. doi: 10.1093/mp/sss105. Epub 2012 Sep 30.
Genevestigator analysis has indicated heat shock induction of transcripts for NADPH-thioredoxin reductase, type C (NTRC) in the light. Here we show overexpression of NTRC in Arabidopsis (NTRC°(E)) resulting in enhanced tolerance to heat shock, whereas NTRC knockout mutant plants (ntrc1) exhibit a temperature sensitive phenotype. To investigate the underlying mechanism of this phenotype, we analyzed the protein's biochemical properties and protein structure. NTRC assembles into homopolymeric structures of varying complexity with functions as a disulfide reductase, a foldase chaperone, and as a holdase chaperone. The multiple functions of NTRC are closely correlated with protein structure. Complexes of higher molecular weight (HMW) showed stronger activity as a holdase chaperone, while low molecular weight (LMW) species exhibited weaker holdase chaperone activity but stronger disulfide reductase and foldase chaperone activities. Heat shock converted LMW proteins into HMW complexes. Mutations of the two active site Cys residues of NTRC into Ser (C217/454S-NTRC) led to a complete inactivation of its disulfide reductase and foldase chaperone functions, but conferred only a slight decrease in its holdase chaperone function. The overexpression of the mutated C217/454S-NTRC provided Arabidopsis with a similar degree of thermotolerance compared with that of NTRC°(E) plants. However, after prolonged incubation under heat shock, NTRC°(E) plants tolerated the stress to a higher degree than C217/454S-NTRC°(E) plants. The results suggest that the heat shock-mediated holdase chaperone function of NTRC is responsible for the increased thermotolerance of Arabidopsis and the activity is significantly supported by NADPH.
Genevestigator 分析表明,在光照下,NADPH-硫氧还蛋白还原酶 C 型(NTRC)的转录物受到热休克诱导。在这里,我们展示了在拟南芥中过表达 NTRC(NTRC°(E))导致对热休克的耐受性增强,而 NTRC 敲除突变体植物(ntrc1)表现出对温度敏感的表型。为了研究这种表型的潜在机制,我们分析了蛋白质的生化特性和蛋白质结构。NTRC 组装成具有不同复杂性的同聚结构,具有作为二硫键还原酶、折叠酶伴侣和持留酶伴侣的功能。NTRC 的多种功能与蛋白质结构密切相关。具有更高分子量(HMW)的复合物表现出更强的持留酶伴侣活性,而低分子量(LMW)物种表现出较弱的持留酶伴侣活性,但具有更强的二硫键还原酶和折叠酶伴侣活性。热休克将 LMW 蛋白转化为 HMW 复合物。将 NTRC 的两个活性位点 Cys 残基突变为 Ser(C217/454S-NTRC)导致其二硫键还原酶和折叠酶伴侣功能完全失活,但仅使其持留酶伴侣功能略有下降。突变的 C217/454S-NTRC 的过表达为拟南芥提供了与 NTRC°(E) 植物相似程度的耐热性。然而,在热休克下长时间孵育后,NTRC°(E) 植物比 C217/454S-NTRC°(E) 植物更能耐受应激。结果表明,NTRC 的热休克介导的持留酶伴侣功能负责增加拟南芥的耐热性,并且该活性得到 NADPH 的显著支持。