Suppr超能文献

枯草芽孢杆菌周生鞭毛的细胞生物学。

The cell biology of peritrichous flagella in Bacillus subtilis.

机构信息

Department of Biology, Indiana University, Bloomington, IN 47405, USA.

出版信息

Mol Microbiol. 2013 Jan;87(1):211-29. doi: 10.1111/mmi.12103. Epub 2012 Dec 11.

Abstract

Bacterial flagella are highly conserved molecular machines that have been extensively studied for assembly, function and gene regulation. Less studied is how and why bacteria differ based on the number and arrangement of the flagella they synthesize. Here we explore the cell biology of peritrichous flagella in the model bacterium Bacillus subtilis by fluorescently labelling flagellar basal bodies, hooks and filaments. We find that the average B. subtilis cell assembles approximately 26 flagellar basal bodies and we show that basal body number is controlled by SwrA. Basal bodies are assembled rapidly (< 5 min) but the assembly of flagella capable of supporting motility is rate limited by filament polymerization (> 40 min). We find that basal bodies are not positioned randomly on the cell surface. Rather, basal bodies occupy a grid-like pattern organized symmetrically around the midcell and that flagella are discouraged at the poles. Basal body position is genetically determined by FlhF and FlhG homologues to control spatial patterning differently from what is seen in bacteria with polar flagella. Finally, spatial control of flagella in B. subtilis seems more relevant to the inheritance of flagella and motility of individual cells than the motile behaviour of populations.

摘要

细菌鞭毛是高度保守的分子机器,其组装、功能和基因调控已得到广泛研究。然而,对于细菌根据自身合成的鞭毛数量和排列方式的不同,其差异是如何产生以及为什么会产生的问题,研究还较少。在这里,我们通过对枯草芽孢杆菌的荧光标记鞭毛基体、钩和丝研究了周生鞭毛的细胞生物学。我们发现,枯草芽孢杆菌细胞平均组装约 26 个鞭毛基体,并且表明基体数量受 SwrA 控制。基体的组装速度很快(<5 分钟),但能够支持运动的鞭毛组装受到丝聚合的限制(>40 分钟)。我们发现基体在细胞表面并非随机排列。相反,基体以对称的方式围绕着细胞中部占据一个网格状模式,并且鞭毛在极区受到抑制。基体的位置由 FlhF 和 FlhG 同源物决定,这与具有极性鞭毛的细菌中观察到的空间模式不同,是通过基因控制的。最后,枯草芽孢杆菌中鞭毛的空间控制似乎与鞭毛的遗传和单个细胞的运动性更相关,而不是与群体的运动行为更相关。

相似文献

1
The cell biology of peritrichous flagella in Bacillus subtilis.
Mol Microbiol. 2013 Jan;87(1):211-29. doi: 10.1111/mmi.12103. Epub 2012 Dec 11.
3
Nascent flagellar basal bodies are immobilized by rod assembly in .
bioRxiv. 2024 Aug 4:2024.08.02.606393. doi: 10.1101/2024.08.02.606393.
5
Molecular and Cell Biological Analysis of SwrB in Bacillus subtilis.
J Bacteriol. 2021 Aug 9;203(17):e0022721. doi: 10.1128/JB.00227-21.
6
Organization of the Flagellar Switch Complex of Bacillus subtilis.
J Bacteriol. 2019 Mar 26;201(8). doi: 10.1128/JB.00626-18. Print 2019 Apr 15.
7
The structure and regulation of flagella in Bacillus subtilis.
Annu Rev Genet. 2014;48:319-40. doi: 10.1146/annurev-genet-120213-092406. Epub 2014 Sep 10.
8
CwlQ Is Required for Swarming Motility but Not Flagellar Assembly in Bacillus subtilis.
J Bacteriol. 2021 Apr 21;203(10). doi: 10.1128/JB.00029-21.
9
Conversion of mono-polar to peritrichous flagellation in Vibrio alginolyticus.
Microbiol Immunol. 2011 Feb;55(2):76-83. doi: 10.1111/j.1348-0421.2010.00290.x.
10
SwrD (YlzI) Promotes Swarming in Bacillus subtilis by Increasing Power to Flagellar Motors.
J Bacteriol. 2017 Dec 20;200(2). doi: 10.1128/JB.00529-17. Print 2018 Jan 15.

引用本文的文献

1
Intrinsic clustering of flagellar basal body proteins in : A self-organization mechanism for assembly and regulation.
Biochem Biophys Rep. 2025 May 14;42:102051. doi: 10.1016/j.bbrep.2025.102051. eCollection 2025 Jun.
2
Nascent flagellar basal bodies are immobilized by rod assembly in .
mBio. 2025 Jun 11;16(6):e0053025. doi: 10.1128/mbio.00530-25. Epub 2025 May 21.
3
FlhG Cooperates With the Cell Cycle Regulator GpsB to Confine Peritrichous Flagella in B. subtilis.
Mol Microbiol. 2025 Aug;124(2):131-140. doi: 10.1111/mmi.15375. Epub 2025 May 19.
4
The TerC family metal chaperone MeeY enables surfactin export in .
J Bacteriol. 2025 May 22;207(5):e0008825. doi: 10.1128/jb.00088-25. Epub 2025 Apr 16.
5
The SinR·SlrR Heteromer Attenuates Transcription of a Long Operon of Flagellar Genes in Bacillus subtilis.
J Mol Biol. 2025 Jun 15;437(12):169123. doi: 10.1016/j.jmb.2025.169123. Epub 2025 Apr 3.
6
Role of a single MCP in evolutionary adaptation of for swimming in planktonic and structured environments.
Appl Environ Microbiol. 2025 Apr 23;91(4):e0022925. doi: 10.1128/aem.00229-25. Epub 2025 Mar 25.
8
Flagellar point mutation causes social aggregation in laboratory-adapted under conditions that promote swimming.
J Bacteriol. 2024 Oct 24;206(10):e0019924. doi: 10.1128/jb.00199-24. Epub 2024 Sep 9.
9
Cultivation in long-term simulated microgravity is detrimental to pyocyanin production and subsequent biofilm formation ability of .
Microbiol Spectr. 2024 Oct 3;12(10):e0021124. doi: 10.1128/spectrum.00211-24. Epub 2024 Aug 20.
10
Flagella and Cell Body Staining of Bacteria with Fluorescent Dyes.
Methods Mol Biol. 2024;2828:79-85. doi: 10.1007/978-1-0716-4023-4_8.

本文引用的文献

1
Surfing biological surfaces: exploiting the nucleoid for partition and transport in bacteria.
Mol Microbiol. 2012 Nov;86(3):513-23. doi: 10.1111/mmi.12017. Epub 2012 Sep 19.
2
Molecular characterization of the flagellar hook in Bacillus subtilis.
J Bacteriol. 2012 Sep;194(17):4619-29. doi: 10.1128/JB.00444-12. Epub 2012 Jun 22.
3
ParA-like protein uses nonspecific chromosomal DNA binding to partition protein complexes.
Proc Natl Acad Sci U S A. 2012 Apr 24;109(17):6698-703. doi: 10.1073/pnas.1114000109. Epub 2012 Apr 10.
4
5
6
Swarming motility and the control of master regulators of flagellar biosynthesis.
Mol Microbiol. 2012 Jan;83(1):14-23. doi: 10.1111/j.1365-2958.2011.07917.x. Epub 2011 Nov 22.
7
Structural basis for the molecular evolution of SRP-GTPase activation by protein.
Nat Struct Mol Biol. 2011 Nov 6;18(12):1376-80. doi: 10.1038/nsmb.2141.
8
CsrA-FliW interaction governs flagellin homeostasis and a checkpoint on flagellar morphogenesis in Bacillus subtilis.
Mol Microbiol. 2011 Oct;82(2):447-61. doi: 10.1111/j.1365-2958.2011.07822.x. Epub 2011 Sep 19.
10
An infrequent molecular ruler controls flagellar hook length in Salmonella enterica.
EMBO J. 2011 Jun 7;30(14):2948-61. doi: 10.1038/emboj.2011.185.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验