Dunn Caroline M, Foust Daniel, Gao Yongqiang, Biteen Julie S, Shaw Sidney L, Kearns Daniel B
bioRxiv. 2024 Aug 4:2024.08.02.606393. doi: 10.1101/2024.08.02.606393.
Flagella are complex, trans-envelope nanomachines that localize to species- specific cellular addresses. Here we study the localization dynamics of the earliest stage of basal body formation in using a fluorescent fusion to the C-ring protein FliM. We find that basal bodies do not exhibit dynamic subunit exchange and are largely stationary at steady state, consistent with flagellar assembly through the peptidoglycan. Rare basal bodies were observed to be mobile however, and the frequency of basal body mobility is elevated both early in basal body assembly and when the rod is mutated. Thus, basal body mobility is a precursor to patterning and we propose that rod polymerization probes the peptidoglycan superstructure for pores of sufficient diameter that permit rod completion. Furthermore, mutation of the rod also disrupts basal body patterning in a way that phenocopies mutation of the cytoplasmic flagellar patterning protein FlhF. We infer that conformational changes in the basal body exchange information between rod synthesis and the cytoplasmic patterning proteins to restrict assembly at certain pores established by a grid-like pattern pre-existent in the peptidoglycan itself.
Bacteria insert flagella in a species-specific pattern on the cell body, but how patterns are achieved is poorly understood. In bacteria with a single polar flagellum, a marker protein localizes to the cell pole and nucleates the assembly of the flagellum at that site. assembles ∼15 flagella over the length of the cell body in a grid-like pattern and lacks all proteins associated with targeted assembly in polarly flagellated bacteria. Here we show that basal bodies are mobile soon after assembly and become immobilized when the flagellar rod transits the peptidoglycan wall. Moreover, defects in the flagellar rod lead to an asymmetric distribution of flagella with respect to the midcell. We conclude that the patterning of flagella is different in , and we infer that the rod probes the peptidoglycan for holes that can accommodate the machine.
鞭毛是复杂的跨膜纳米机器,定位于物种特异性的细胞位点。在这里,我们使用与C环蛋白FliM的荧光融合来研究在[具体细菌名称未给出]中基体形成最早阶段的定位动态。我们发现[具体细菌名称未给出]的基体不表现出动态亚基交换,在稳态下基本静止,这与通过肽聚糖进行鞭毛组装一致。然而,观察到罕见的基体是可移动的,并且基体移动频率在基体组装早期以及杆部发生突变时都会升高。因此,基体移动是模式形成的前兆,我们提出杆部聚合探测肽聚糖超结构中具有足够直径的孔,以允许杆部完成组装。此外,杆部的突变还会以类似于细胞质鞭毛模式形成蛋白FlhF突变的方式破坏基体模式。我们推断,基体的构象变化在杆部合成和细胞质模式形成蛋白之间交换信息,以限制在肽聚糖本身中预先存在的网格状模式所确定的某些孔处的组装。
细菌以物种特异性模式在细胞体上插入鞭毛,但模式是如何实现的却知之甚少。在具有单根极鞭毛的细菌中,一种标记蛋白定位于细胞极并在该位点启动鞭毛的组装。[具体细菌名称未给出]在细胞体长度上以网格状模式组装约15根鞭毛,并且缺乏与极鞭毛细菌中靶向组装相关的所有蛋白质。在这里我们表明,[具体细菌名称未给出]的基体在组装后不久是可移动的,并且当鞭毛杆穿过肽聚糖壁时会固定下来。此外,鞭毛杆的缺陷导致鞭毛相对于细胞中部呈不对称分布。我们得出结论,[具体细菌名称未给出]中鞭毛的模式形成是不同的,并且我们推断[具体细菌名称未给出]的杆部探测肽聚糖以寻找可容纳该机器的孔。