Suppr超能文献

整合蛋白质组学和转录组学分析揭示了小鼠精子发生的多种转录后调控机制。

Integrative proteomic and transcriptomic analyses reveal multiple post-transcriptional regulatory mechanisms of mouse spermatogenesis.

机构信息

State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, PR China.

出版信息

Mol Cell Proteomics. 2013 May;12(5):1144-57. doi: 10.1074/mcp.M112.020123. Epub 2013 Jan 16.

Abstract

Mammalian spermatogenesis consists of many cell types and biological processes and serves as an excellent model for studying gene regulation at transcriptional and post-transcriptional levels. Many key proteins, miRNAs, and perhaps piRNAs have been shown to be involved in post-transcriptional regulation of spermatogenesis. However, a systematic method for assessing the relationship between protein and mRNA expression has not been available for studying mechanisms of post-transcriptional regulation. In the present study, we used the iTRAQ-based quantitative proteomic approach to identify 2008 proteins in mouse type A spermatogonia, pachytene spermatocytes, round spermatids, and elongative spermatids with high confidence. Of these proteins, 1194 made up four dynamically changing clusters, which reflect the mitotic amplification, meiosis, and post-meiotic development of germ cells. We identified five major regulatory mechanisms termed "transcript only," "transcript degradation," "translation repression," "translation de-repression," and "protein degradation" based on changes in protein level relative to changes in mRNA level at the mitosis/meiosis transition and the meiosis/post-meiotic development transition. We found that post-transcriptional regulatory mechanisms are related to the generation of piRNAs and antisense transcripts. Our results provide a valuable inventory of proteins produced during mouse spermatogenesis and contribute to elucidating the mechanisms of the post-transcriptional regulation of gene expression in mammalian spermatogenesis.

摘要

哺乳动物的精子发生由许多细胞类型和生物过程组成,是研究转录和转录后水平基因调控的理想模型。许多关键蛋白、miRNAs,也许还有 piRNAs 已被证明参与精子发生的转录后调控。然而,对于研究转录后调控机制而言,一种用于评估蛋白质和 mRNA 表达之间关系的系统方法尚未出现。在本研究中,我们使用基于 iTRAQ 的定量蛋白质组学方法,以高可信度鉴定了小鼠 A 型精原细胞、粗线期精母细胞、圆形精子细胞和伸长精子细胞中的 2008 种蛋白质。这些蛋白质中,1194 种构成了四个动态变化的簇,反映了生殖细胞的有丝分裂扩增、减数分裂和减数后发育。我们基于有丝分裂/减数分裂转换和减数后发育转换时蛋白质水平相对于 mRNA 水平的变化,确定了五种主要的调控机制,分别称为“仅转录”、“转录降解”、“翻译抑制”、“翻译去抑制”和“蛋白质降解”。我们发现,转录后调控机制与 piRNAs 和反义转录本的产生有关。我们的结果提供了在小鼠精子发生过程中产生的蛋白质的宝贵清单,并有助于阐明哺乳动物精子发生中基因表达的转录后调控机制。

相似文献

1
Integrative proteomic and transcriptomic analyses reveal multiple post-transcriptional regulatory mechanisms of mouse spermatogenesis.
Mol Cell Proteomics. 2013 May;12(5):1144-57. doi: 10.1074/mcp.M112.020123. Epub 2013 Jan 16.
2
Profiling of miRNAs in porcine germ cells during spermatogenesis.
Reproduction. 2017 Dec;154(6):789-798. doi: 10.1530/REP-17-0441. Epub 2017 Sep 25.
3
piRNA profiling during specific stages of mouse spermatogenesis.
RNA. 2011 Jul;17(7):1191-203. doi: 10.1261/rna.2648411. Epub 2011 May 20.
4
Microarray-based analysis of cell-cycle gene expression during spermatogenesis in the mouse.
Biol Reprod. 2010 Oct;83(4):663-75. doi: 10.1095/biolreprod.110.084889. Epub 2010 Jul 14.
5
Small RNA molecules in the regulation of spermatogenesis.
Reproduction. 2009 Jun;137(6):901-11. doi: 10.1530/REP-08-0494. Epub 2009 Mar 24.
6
Spermatogenesis in mammals: proteomic insights.
Syst Biol Reprod Med. 2012 Aug;58(4):179-90. doi: 10.3109/19396368.2012.691943.
9
yama, a mutant allele of Mov10l1, disrupts retrotransposon silencing and piRNA biogenesis.
PLoS Genet. 2021 Feb 26;17(2):e1009265. doi: 10.1371/journal.pgen.1009265. eCollection 2021 Feb.

引用本文的文献

2
Global characterization of mouse testis O-glycoproteome landscape during spermatogenesis.
Nat Commun. 2025 Mar 18;16(1):2676. doi: 10.1038/s41467-025-57980-7.
4
CARF regulates the alternative splicing and piwi/piRNA complexes during mouse spermatogenesis through PABPC1.
Acta Biochim Biophys Sin (Shanghai). 2024 Dec 11;57(4):656-666. doi: 10.3724/abbs.2024224.
5
CWF19L2 is Essential for Male Fertility and Spermatogenesis by Regulating Alternative Splicing.
Adv Sci (Weinh). 2024 Aug;11(31):e2403866. doi: 10.1002/advs.202403866. Epub 2024 Jun 18.
6
Gene regulation during meiosis.
Trends Genet. 2024 Apr;40(4):326-336. doi: 10.1016/j.tig.2023.12.006. Epub 2024 Jan 4.
8
Molecular characterization, expression patterns and cellular localization of gene in male Hezuo pig.
PeerJ. 2023 Oct 24;11:e16341. doi: 10.7717/peerj.16341. eCollection 2023.

本文引用的文献

1
The molecular basis of ATM-dependent dimerization of the Mdc1 DNA damage checkpoint mediator.
Nucleic Acids Res. 2012 May;40(9):3913-28. doi: 10.1093/nar/gkr1300. Epub 2012 Jan 10.
2
miRNA and mammalian male germ cells.
Hum Reprod Update. 2012 Jan-Feb;18(1):44-59. doi: 10.1093/humupd/dmr041. Epub 2011 Oct 11.
3
XRCC4 controls nuclear import and distribution of Ligase IV and exchanges faster at damaged DNA in complex with Ligase IV.
DNA Repair (Amst). 2011 Dec 10;10(12):1232-42. doi: 10.1016/j.dnarep.2011.09.012. Epub 2011 Oct 5.
4
Control of messenger RNA fate by RNA-binding proteins: an emphasis on mammalian spermatogenesis.
J Androl. 2012 May-Jun;33(3):309-37. doi: 10.2164/jandrol.111.014167. Epub 2011 Jul 14.
6
Chromatoid body and small RNAs in male germ cells.
Reproduction. 2011 Aug;142(2):195-209. doi: 10.1530/REP-11-0057. Epub 2011 Jun 7.
7
piRNA profiling during specific stages of mouse spermatogenesis.
RNA. 2011 Jul;17(7):1191-203. doi: 10.1261/rna.2648411. Epub 2011 May 20.
8
piRNAs, transposon silencing, and germline genome integrity.
Mutat Res. 2011 Sep 1;714(1-2):95-104. doi: 10.1016/j.mrfmmm.2011.05.002. Epub 2011 May 11.
9
Proteomic analysis of male 4C germ cell proteins involved in mouse meiosis.
Proteomics. 2011 Jan;11(2):298-308. doi: 10.1002/pmic.200900726. Epub 2010 Dec 10.
10
What are natural antisense transcripts good for?
Biochem Soc Trans. 2010 Aug;38(4):1144-9. doi: 10.1042/BST0381144.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验