Suppr超能文献

在系统发育和地理上不同的 Astyanax 洞穴鱼群体中,白化病是通过相同的 Oca2 失活等位基因产生的。

Albinism in phylogenetically and geographically distinct populations of Astyanax cavefish arises through the same loss-of-function Oca2 allele.

机构信息

Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA.

出版信息

Heredity (Edinb). 2013 Aug;111(2):122-30. doi: 10.1038/hdy.2013.26. Epub 2013 Apr 10.

Abstract

The Mexican tetra, Astyanax mexicanus, comprises 29 populations of cave-adapted fish distributed across a vast karst region in northeastern Mexico. These populations have a complex evolutionary history, having descended from 'old' and 'young' ancestral surface-dwelling stocks that invaded the region ∼6.7 and ∼2.8 MYa, respectively. This study investigates a set of captive, pigmented Astyanax cavefish collected from the Micos cave locality in 1970, in which albinism appeared over the past two decades. We combined novel coloration analyses, coding sequence comparisons and mRNA expression level studies to investigate the origin of albinism in captive-bred Micos cavefish. We discovered that albino Micos cavefish harbor two copies of a loss-of-function ocular and cutaneous albinism type II (Oca2) allele previously identified in the geographically distant Pachón cave population. This result suggests that phylogenetically young Micos cavefish and phylogenetically old Pachón cave fish inherited this Oca2 allele from the ancestral surface-dwelling taxon. This likely resulted from the presence of the loss-of-function Oca2 haplotype in the 'young' ancestral surface-dwelling stock that colonized the Micos cave and also introgressed into the ancient Pachón cave population. The appearance of albinism in captive Micos cavefish, caused by the same loss-of-function allele present in Pachón cavefish, implies that geographically and phylogenetically distinct cave populations can evolve the same troglomorphic phenotype from standing genetic variation present in the ancestral taxon.

摘要

墨西哥脂鲤共有 29 个种群,分布在墨西哥东北部一个广阔的喀斯特地区。这些种群有着复杂的进化历史,起源于分别在约 670 万年前和 280 万年前入侵该地区的“老”和“新”祖先地表水种群。本研究调查了一组 1970 年从米科斯洞穴收集的、具有独特颜色的人工饲养的洞穴脂鲤,在过去的二十年里,这些鱼的白化现象有所增加。我们结合了新的颜色分析、编码序列比较和 mRNA 表达水平研究,以研究人工饲养的米科斯洞穴白化鱼白化现象的起源。我们发现,白化米科斯洞穴脂鲤携带两个之前在地理上相隔较远的帕乔洞穴种群中发现的失活眼部和皮肤白化病 II 型(Oca2)等位基因的副本。这一结果表明,在进化上年轻的米科斯洞穴脂鲤和进化上古老的帕乔洞穴脂鲤从祖先地表水种群继承了这个 Oca2 等位基因。这可能是由于在“年轻”的祖先地表水种群中存在失活的 Oca2 单倍型,该种群殖民了米科斯洞穴,并也渗入了古老的帕乔洞穴种群。在人工饲养的米科斯洞穴脂鲤中出现白化现象,是由与帕乔洞穴脂鲤相同的失活等位基因引起的,这意味着在地理上和进化上不同的洞穴种群可以从祖先种群中存在的遗传变异中进化出相同的洞穴形态。

相似文献

2
Pleiotropic function of the oca2 gene underlies the evolution of sleep loss and albinism in cavefish.
Curr Biol. 2021 Aug 23;31(16):3694-3701.e4. doi: 10.1016/j.cub.2021.06.077. Epub 2021 Jul 21.
3
Genome editing using TALENs in blind Mexican Cavefish, Astyanax mexicanus.
PLoS One. 2015 Mar 16;10(3):e0119370. doi: 10.1371/journal.pone.0119370. eCollection 2015.
6
The complex origin of Astyanax cavefish.
BMC Evol Biol. 2012 Jun 30;12:105. doi: 10.1186/1471-2148-12-105.
7
Evidence for late Pleistocene origin of Astyanax mexicanus cavefish.
BMC Evol Biol. 2018 Apr 18;18(1):43. doi: 10.1186/s12862-018-1156-7.
8
Parallel speciation in Astyanax cave fish (Teleostei) in Northern Mexico.
Mol Phylogenet Evol. 2012 Jan;62(1):62-70. doi: 10.1016/j.ympev.2011.09.005. Epub 2011 Sep 22.
9
Next generation phylogeography of cave and surface Astyanax mexicanus.
Mol Phylogenet Evol. 2014 Oct;79:368-74. doi: 10.1016/j.ympev.2014.06.029. Epub 2014 Jul 8.
10
Repeated evolution of eye loss in Mexican cavefish: Evidence of similar developmental mechanisms in independently evolved populations.
J Exp Zool B Mol Dev Evol. 2020 Nov;334(7-8):423-437. doi: 10.1002/jez.b.22977. Epub 2020 Jul 2.

引用本文的文献

2
Correlated evolution of conspicuous colouration and burrowing in crayfish.
Proc Biol Sci. 2024 Jul;291(2026):20240632. doi: 10.1098/rspb.2024.0632. Epub 2024 Jul 10.
3
From darkness to discovery: evolutionary, adaptive, and translational genetic insights from cavefish.
Trends Genet. 2024 Jan;40(1):24-38. doi: 10.1016/j.tig.2023.10.002. Epub 2023 Oct 26.
4
A community-science approach identifies genetic variants associated with three color morphs in ball pythons (Python regius).
PLoS One. 2022 Oct 19;17(10):e0276376. doi: 10.1371/journal.pone.0276376. eCollection 2022.
5
Evolution of pigment cells and patterns: recent insights from teleost fishes.
Curr Opin Genet Dev. 2021 Aug;69:88-96. doi: 10.1016/j.gde.2021.02.006. Epub 2021 Mar 17.
7
Insights into the Evolution of Neoteny from the Genome of the Asian Icefish Protosalanx chinensis.
iScience. 2020 Jul 24;23(7):101267. doi: 10.1016/j.isci.2020.101267. Epub 2020 Jun 14.
8
Developmental Transcriptomic Analysis of the Cave-Dwelling Crustacean, .
Genes (Basel). 2019 Dec 29;11(1):42. doi: 10.3390/genes11010042.
9
The role of gene flow in rapid and repeated evolution of cave-related traits in Mexican tetra, Astyanax mexicanus.
Mol Ecol. 2018 Nov;27(22):4397-4416. doi: 10.1111/mec.14877. Epub 2018 Oct 16.
10
Hypocretin underlies the evolution of sleep loss in the Mexican cavefish.
Elife. 2018 Feb 6;7:e32637. doi: 10.7554/eLife.32637.

本文引用的文献

2
The complex origin of Astyanax cavefish.
BMC Evol Biol. 2012 Jun 30;12:105. doi: 10.1186/1471-2148-12-105.
4
Parallel speciation in Astyanax cave fish (Teleostei) in Northern Mexico.
Mol Phylogenet Evol. 2012 Jan;62(1):62-70. doi: 10.1016/j.ympev.2011.09.005. Epub 2011 Sep 22.
7
Genes, modules and the evolution of cave fish.
Heredity (Edinb). 2010 Nov;105(5):413-22. doi: 10.1038/hdy.2009.184. Epub 2010 Jan 13.
8
Regressive evolution in Astyanax cavefish.
Annu Rev Genet. 2009;43:25-47. doi: 10.1146/annurev-genet-102108-134216.
9
Value of captive populations for quantitative genetics research.
Trends Ecol Evol. 2009 May;24(5):263-70. doi: 10.1016/j.tree.2008.11.013. Epub 2009 Mar 5.
10
A novel role for Mc1r in the parallel evolution of depigmentation in independent populations of the cavefish Astyanax mexicanus.
PLoS Genet. 2009 Jan;5(1):e1000326. doi: 10.1371/journal.pgen.1000326. Epub 2009 Jan 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验