Suppr超能文献

微同源介导的末端连接和同源重组共享初始末端切除步骤,以修复哺乳动物细胞中的 DNA 双链断裂。

Microhomology-mediated End Joining and Homologous Recombination share the initial end resection step to repair DNA double-strand breaks in mammalian cells.

机构信息

Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA.

出版信息

Proc Natl Acad Sci U S A. 2013 May 7;110(19):7720-5. doi: 10.1073/pnas.1213431110. Epub 2013 Apr 22.

Abstract

Microhomology-mediated end joining (MMEJ) is a major pathway for Ku-independent alternative nonhomologous end joining, which contributes to chromosomal translocations and telomere fusions, but the underlying mechanism of MMEJ in mammalian cells is not well understood. In this study, we demonstrated that, distinct from Ku-dependent classical nonhomologous end joining, MMEJ--even with very limited end resection--requires cyclin-dependent kinase activities and increases significantly when cells enter S phase. We also showed that MMEJ shares the initial end resection step with homologous recombination (HR) by requiring meiotic recombination 11 homolog A (Mre11) nuclease activity, which is needed for subsequent recruitment of Bloom syndrome protein (BLM) and exonuclease 1 (Exo1) to DNA double-strand breaks (DSBs) to promote extended end resection and HR. MMEJ does not require S139-phosphorylated histone H2AX (γ-H2AX), suggesting that initial end resection likely occurs at DSB ends. Using a MMEJ and HR competition repair substrate, we demonstrated that MMEJ with short end resection is used in mammalian cells at the level of 10-20% of HR when both HR and nonhomologous end joining are available. Furthermore, MMEJ is used to repair DSBs generated at collapsed replication forks. These studies suggest that MMEJ not only is a backup repair pathway in mammalian cells, but also has important physiological roles in repairing DSBs to maintain cell viability, especially under genomic stress.

摘要

微同源介导的末端连接(MMEJ)是 Ku 非依赖性的替代非同源末端连接的主要途径,它有助于染色体易位和端粒融合,但哺乳动物细胞中 MMEJ 的潜在机制尚不清楚。在这项研究中,我们证明了与 Ku 依赖性经典非同源末端连接不同,即使末端切除非常有限,MMEJ--也需要细胞周期蛋白依赖性激酶的活性,并且在细胞进入 S 期时显著增加。我们还表明,MMEJ 通过需要减数分裂重组 11 同源物 A(Mre11)核酸酶活性与同源重组(HR)共享初始末端切除步骤,该步骤对于随后招募 Bloom 综合征蛋白(BLM)和核酸外切酶 1(Exo1)到 DNA 双链断裂(DSBs)以促进扩展末端切除和 HR 是必需的。MMEJ 不需要 S139 磷酸化组蛋白 H2AX(γ-H2AX),这表明初始末端切除可能发生在 DSB 末端。使用 MMEJ 和 HR 竞争修复底物,我们证明了当 HR 和非同源末端连接都可用时,在哺乳动物细胞中,短末端切除的 MMEJ 以 10-20%的 HR 水平用于修复 DSB。此外,MMEJ 用于修复复制叉崩溃产生的 DSB。这些研究表明,MMEJ 不仅是哺乳动物细胞的备用修复途径,而且在修复 DSB 以维持细胞活力方面具有重要的生理作用,尤其是在基因组应激下。

相似文献

2
DNA end resection is needed for the repair of complex lesions in G1-phase human cells.
Cell Cycle. 2014;13(16):2509-16. doi: 10.4161/15384101.2015.941743.
3
A role for human homologous recombination factors in suppressing microhomology-mediated end joining.
Nucleic Acids Res. 2016 Jul 8;44(12):5743-57. doi: 10.1093/nar/gkw326. Epub 2016 Apr 29.
4
Super-resolution mapping of cellular double-strand break resection complexes during homologous recombination.
Proc Natl Acad Sci U S A. 2021 Mar 16;118(11). doi: 10.1073/pnas.2021963118.
5
Mechanism of DNA resection during intrachromosomal recombination and immunoglobulin class switching.
J Exp Med. 2013 Jan 14;210(1):115-23. doi: 10.1084/jem.20121975. Epub 2012 Dec 17.
6
EEPD1 Rescues Stressed Replication Forks and Maintains Genome Stability by Promoting End Resection and Homologous Recombination Repair.
PLoS Genet. 2015 Dec 18;11(12):e1005675. doi: 10.1371/journal.pgen.1005675. eCollection 2015 Dec.
8
The Mre11/Rad50/Nbs1 complex functions in resection-based DNA end joining in Xenopus laevis.
Nucleic Acids Res. 2010 Jan;38(2):441-54. doi: 10.1093/nar/gkp905. Epub 2009 Nov 5.
9
RECQL4 Promotes DNA End Resection in Repair of DNA Double-Strand Breaks.
Cell Rep. 2016 Jun 28;16(1):161-173. doi: 10.1016/j.celrep.2016.05.079. Epub 2016 Jun 16.

引用本文的文献

1
ENHANCED CLEAVAGE OF GENOMIC USING CASX2.
bioRxiv. 2025 Jul 11:2025.07.08.663680. doi: 10.1101/2025.07.08.663680.
2
PARP1 and PARP2 are dispensable for DNA repair by microhomology-mediated end-joining during mitosis.
bioRxiv. 2025 Jun 9:2025.06.09.658719. doi: 10.1101/2025.06.09.658719.
5
A non-tethering role for the Drosophila Pol θ linker domain in promoting damage resolution.
Nucleic Acids Res. 2025 Apr 22;53(8). doi: 10.1093/nar/gkaf304.
6
ATM priming and end resection-coupled phosphorylation of MRE11 is important for fork protection and replication restart.
Proc Natl Acad Sci U S A. 2025 Apr 22;122(16):e2422720122. doi: 10.1073/pnas.2422720122. Epub 2025 Apr 18.
7
Mechanisms and regulation of DNA end resection in the maintenance of genome stability.
Nat Rev Mol Cell Biol. 2025 Mar 25. doi: 10.1038/s41580-025-00841-4.
8
Roles for the 3D genome in the cell cycle, DNA replication, and double strand break repair.
Front Cell Dev Biol. 2025 Feb 27;13:1548946. doi: 10.3389/fcell.2025.1548946. eCollection 2025.
9
The CRISPR-Cas9 System Is Used to Edit the Autoimmune Regulator Gene in Vitro and in Vivo.
Adv Exp Med Biol. 2025;1471:269-283. doi: 10.1007/978-3-031-77921-3_10.
10
Prime Editing: Mechanistic Insights and DNA Repair Modulation.
Cells. 2025 Feb 13;14(4):277. doi: 10.3390/cells14040277.

本文引用的文献

1
CtIP protein dimerization is critical for its recruitment to chromosomal DNA double-stranded breaks.
J Biol Chem. 2012 Jun 15;287(25):21471-80. doi: 10.1074/jbc.M112.355354. Epub 2012 Apr 27.
2
Mechanisms of replication fork protection: a safeguard for genome stability.
Crit Rev Biochem Mol Biol. 2012 May-Jun;47(3):222-35. doi: 10.3109/10409238.2012.655374. Epub 2012 Feb 11.
3
Analysis of MRE11's function in the 5'-->3' processing of DNA double-strand breaks.
Nucleic Acids Res. 2012 May;40(10):4496-506. doi: 10.1093/nar/gks044. Epub 2012 Feb 8.
5
Dynamics of DNA damage response proteins at DNA breaks: a focus on protein modifications.
Genes Dev. 2011 Mar 1;25(5):409-33. doi: 10.1101/gad.2021311.
7
Mre11-Rad50-Xrs2 and Sae2 promote 5' strand resection of DNA double-strand breaks.
Nat Struct Mol Biol. 2010 Dec;17(12):1478-85. doi: 10.1038/nsmb.1957. Epub 2010 Nov 21.
8
Saccharomyces cerevisiae Mre11/Rad50/Xrs2 and Ku proteins regulate association of Exo1 and Dna2 with DNA breaks.
EMBO J. 2010 Oct 6;29(19):3370-80. doi: 10.1038/emboj.2010.219. Epub 2010 Sep 10.
9
Mechanism of the ATP-dependent DNA end-resection machinery from Saccharomyces cerevisiae.
Nature. 2010 Sep 2;467(7311):108-11. doi: 10.1038/nature09318.
10
Ku prevents Exo1 and Sgs1-dependent resection of DNA ends in the absence of a functional MRX complex or Sae2.
EMBO J. 2010 Oct 6;29(19):3358-69. doi: 10.1038/emboj.2010.193. Epub 2010 Aug 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验