Suppr超能文献

细胞外酶 CD39 和 CD73 的协同作用导致人恶性脑胶质瘤中的腺苷能免疫抑制。

Synergy between the ectoenzymes CD39 and CD73 contributes to adenosinergic immunosuppression in human malignant gliomas.

机构信息

Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, China.

出版信息

Neuro Oncol. 2013 Sep;15(9):1160-72. doi: 10.1093/neuonc/not067. Epub 2013 Jun 4.

Abstract

BACKGROUND

The importance of ectoenzymes CD39 and CD73 in mediating adenosinergic immunosuppression has been recognized, but their roles in human malignant glioma-associated immunosuppression remain largely unknown.

METHODS

In this study, the ectoenzyme characteristics of malignant glioma cells and infiltrating CD4(+) T lymphocytes isolated from newly diagnosed malignant glioma patients were investigated. The ectoenzyme activities of both cell populations were determined by nucleotide hydrolysis assay. The immunosuppressive property of the CD39-CD73 synergic effect was evaluated via responder T-cell proliferation assay.

RESULTS

We observed that CD39(-)CD73(+) glioma cells and infiltrating CD4(+)CD39(high)CD73(low) T lymphocytes exhibited 2 distinct but complementary ectoenzyme phenotypes, which were further verified by enzyme activity assay. The nucleotide hydrolysis cascade was incomplete unless CD39 derived from T lymphocytes and CD73 collaborated synergistically. We demonstrated that increased suppression of responder CD4(+) T-cell proliferation suppression was induced by CD4(+)CD39(+) T cells in the presence of CD73(+) glioma cells, which could be alleviated by the CD39 inhibitor ARL67156, the CD73 inhibitor APCP, or the adenosine receptor A2aR antagonist SCH58261. In addition, survival analysis suggested that CD73 downregulation was a positive prognostic factor related to the extended disease-free survival of glioblastoma patients.

CONCLUSIONS

Our data indicate that glioma-derived CD73 contributes to local adenosine-mediated immunosuppression in synergy with CD39 from infiltrating CD4(+)CD39(+) T lymphocytes, which could become a potential therapeutic target for treatment of malignant glioma and other immunosuppressive diseases.

摘要

背景

细胞外酶 CD39 和 CD73 在介导嘌呤能免疫抑制中的重要性已得到认可,但它们在人类恶性脑胶质瘤相关免疫抑制中的作用在很大程度上仍不清楚。

方法

在这项研究中,研究了新诊断的恶性脑胶质瘤患者分离的恶性脑胶质瘤细胞和浸润性 CD4(+)T 淋巴细胞的细胞外酶特征。通过核苷酸水解测定法测定两个细胞群体的细胞外酶活性。通过应答 T 细胞增殖测定法评估 CD39-CD73 协同作用的免疫抑制特性。

结果

我们观察到 CD39(-)CD73(+)脑胶质瘤细胞和浸润性 CD4(+)CD39(high)CD73(low)T 淋巴细胞表现出 2 种不同但互补的细胞外酶表型,这通过酶活性测定进一步得到验证。除非 T 淋巴细胞衍生的 CD39 与 CD73 协同合作,否则核苷酸水解级联反应是不完全的。我们证明,在 CD73(+)脑胶质瘤细胞存在的情况下,CD4(+)CD39(+)T 细胞诱导应答 CD4(+)T 细胞增殖抑制的抑制作用增加,这种抑制作用可以通过 CD39 抑制剂 ARL67156、CD73 抑制剂 APCP 或腺苷受体 A2aR 拮抗剂 SCH58261 缓解。此外,生存分析表明 CD73 下调是与胶质母细胞瘤患者无进展生存期延长相关的阳性预后因素。

结论

我们的数据表明,脑胶质瘤衍生的 CD73 与浸润性 CD4(+)CD39(+)T 淋巴细胞中的 CD39 协同作用,有助于局部腺苷介导的免疫抑制,这可能成为治疗恶性脑胶质瘤和其他免疫抑制性疾病的潜在治疗靶点。

相似文献

1
Synergy between the ectoenzymes CD39 and CD73 contributes to adenosinergic immunosuppression in human malignant gliomas.
Neuro Oncol. 2013 Sep;15(9):1160-72. doi: 10.1093/neuonc/not067. Epub 2013 Jun 4.
2
Phenotypical analysis of ectoenzymes CD39/CD73 and adenosine receptor 2A in CD4 CD25 Foxp3 regulatory T-cells in psoriasis.
Australas J Dermatol. 2018 Feb;59(1):e31-e38. doi: 10.1111/ajd.12561. Epub 2017 Mar 15.
4
Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression.
J Exp Med. 2007 Jun 11;204(6):1257-65. doi: 10.1084/jem.20062512. Epub 2007 May 14.
5
Increased ectonucleotidase expression and activity in regulatory T cells of patients with head and neck cancer.
Clin Cancer Res. 2009 Oct 15;15(20):6348-57. doi: 10.1158/1078-0432.CCR-09-1143. Epub 2009 Oct 13.
6
Resident cardiac immune cells and expression of the ectonucleotidase enzymes CD39 and CD73 after ischemic injury.
PLoS One. 2012;7(4):e34730. doi: 10.1371/journal.pone.0034730. Epub 2012 Apr 13.
9
CD73 and CD39 ectonucleotidases in T cell differentiation: Beyond immunosuppression.
FEBS Lett. 2015 Nov 14;589(22):3454-60. doi: 10.1016/j.febslet.2015.07.027. Epub 2015 Jul 29.
10
Methotrexate up-regulates ecto-5'-nucleotidase/CD73 and reduces the frequency of T lymphocytes in the glioblastoma microenvironment.
Purinergic Signal. 2016 Jun;12(2):303-12. doi: 10.1007/s11302-016-9505-8. Epub 2016 Feb 24.

引用本文的文献

1
Immune checkpoints in immune response to glioma: two sides of the same coin.
Front Immunol. 2025 Aug 15;16:1639521. doi: 10.3389/fimmu.2025.1639521. eCollection 2025.
4
An Update on the Clinical Status, Challenges, and Future Directions of Oncolytic Virotherapy for Malignant Gliomas.
Curr Treat Options Oncol. 2024 Jul;25(7):952-991. doi: 10.1007/s11864-024-01211-6. Epub 2024 Jun 19.
5
Treatment advances in high-grade gliomas.
Front Oncol. 2024 Apr 10;14:1287725. doi: 10.3389/fonc.2024.1287725. eCollection 2024.
7
EGFR alterations in glioblastoma play a role in antitumor immunity regulation.
Front Oncol. 2023 Aug 4;13:1236246. doi: 10.3389/fonc.2023.1236246. eCollection 2023.
8
ENTPD1 (CD39) and NT5E (CD73) expression in human glioblastoma: an in silico analysis.
Purinergic Signal. 2024 Jun;20(3):285-289. doi: 10.1007/s11302-023-09951-0. Epub 2023 Jul 4.
9
AR as a Prognostic Marker and a Potential Immunotherapy Target in Human Glioma.
Int J Mol Sci. 2023 Apr 3;24(7):6688. doi: 10.3390/ijms24076688.
10
Characterization of purinergic signaling in tumor-infiltrating lymphocytes from lower- and high-grade gliomas.
Purinergic Signal. 2024 Feb;20(1):47-64. doi: 10.1007/s11302-023-09931-4. Epub 2023 Mar 24.

本文引用的文献

2
5'-ectonucleotidase mediates multiple-drug resistance in glioblastoma multiforme cells.
J Cell Physiol. 2013 Mar;228(3):602-8. doi: 10.1002/jcp.24168.
3
ENTPD1/CD39 is a promising therapeutic target in oncology.
Oncogene. 2013 Apr 4;32(14):1743-51. doi: 10.1038/onc.2012.269. Epub 2012 Jul 2.
4
The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data.
Cancer Discov. 2012 May;2(5):401-4. doi: 10.1158/2159-8290.CD-12-0095.
5
Phenotypic and functional characteristics of CD4+ CD39+ FOXP3+ and CD4+ CD39+ FOXP3neg T-cell subsets in cancer patients.
Eur J Immunol. 2012 Jul;42(7):1876-85. doi: 10.1002/eji.201142347. Epub 2012 Jun 18.
6
Immunotherapy of cancer in 2012.
CA Cancer J Clin. 2012 Sep-Oct;62(5):309-35. doi: 10.3322/caac.20132. Epub 2012 May 10.
7
CD73: a potent suppressor of antitumor immune responses.
Trends Immunol. 2012 May;33(5):231-7. doi: 10.1016/j.it.2012.02.009. Epub 2012 Apr 7.
8
NT5E (CD73) is epigenetically regulated in malignant melanoma and associated with metastatic site specificity.
Br J Cancer. 2012 Apr 10;106(8):1446-52. doi: 10.1038/bjc.2012.95. Epub 2012 Mar 27.
9
Regulation of macrophage function by adenosine.
Arterioscler Thromb Vasc Biol. 2012 Apr;32(4):865-9. doi: 10.1161/ATVBAHA.111.226852.
10
CD73-deficient mice are resistant to carcinogenesis.
Cancer Res. 2012 May 1;72(9):2190-6. doi: 10.1158/0008-5472.CAN-12-0420. Epub 2012 Mar 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验