Suppr超能文献

DNA 双链断裂的复杂性是增强末端切除的关键因素。

The complexity of DNA double strand breaks is a critical factor enhancing end-resection.

机构信息

Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba, Japan; International Open Laboratory, National Institute of Radiological Sciences, Chiba, Japan.

出版信息

DNA Repair (Amst). 2013 Nov;12(11):936-46. doi: 10.1016/j.dnarep.2013.08.009. Epub 2013 Sep 13.

Abstract

DNA double strand breaks (DSBs) induced by ionizing radiation (IR) are deleterious damages. Two major pathways repair DSBs in human cells, DNA non-homologous end-joining (NHEJ) and homologous recombination (HR). It has been suggested that the balance between the two repair pathways varies depending on the chromatin structure surrounding the damage site and/or the complexity of damage at the DNA break ends. Heavy ion radiation is known to induce complex-type DSBs, and the efficiency of NHEJ in repairing these DSBs was shown to be diminished. Taking advantage of the ability of high linear energy transfer (LET) radiation to produce complex DSBs effectively, we investigated how the complexity of DSB end structure influences DNA damage responses. An early step in HR is the generation of 3'-single strand DNA (SSD) via a process of DNA end resection that requires CtIP. To assess this process, we analyzed the level of phosphorylated CtIP, as well as RPA phosphorylation and focus formation, which occur on the exposed SSD. We show that complex DSBs efficiently activate DNA end resection. After heavy ion beam irradiation, resection signals appear both in the vicinity of heterochromatic areas, which is also observed after X-irradiation, and additionally in euchromatic areas. Consequently, ~85% of complex DSBs are subjected to resection in heavy ion particle tracks. Furthermore, around 20-40% of G1 cells exhibit resection signals. Taken together, our observations reveal that the complexity of DSB ends is a critical factor regulating the choice of DSB repair pathway and drastically alters the balance toward resection-mediated rejoining. As demonstrated here, studies on DNA damage responses induced by heavy ion radiation provide an important tool to shed light on mechanisms regulating DNA end resection.

摘要

DNA 双链断裂 (DSBs) 是由电离辐射 (IR) 引起的有害损伤。人类细胞中有两种主要的途径来修复 DSBs,即 DNA 非同源末端连接 (NHEJ) 和同源重组 (HR)。据报道,两种修复途径之间的平衡取决于损伤部位周围的染色质结构和/或 DNA 断裂末端的复杂性。重离子辐射已知会诱导复杂型 DSBs,并且 NHEJ 修复这些 DSBs的效率降低。利用高线性能量转移 (LET) 辐射有效产生复杂 DSBs 的能力,我们研究了 DSB 末端结构的复杂性如何影响 DNA 损伤反应。HR 的早期步骤是通过 DNA 末端切除过程产生 3'-单链 DNA (SSD),该过程需要 CtIP。为了评估这个过程,我们分析了磷酸化 CtIP 的水平,以及 RPA 磷酸化和焦点形成,这些都发生在暴露的 SSD 上。我们表明,复杂的 DSBs 能够有效地激活 DNA 末端切除。在重离子束照射后,在异染色质区域附近出现了切除信号,这在 X 射线照射后也观察到了,此外还在常染色质区域观察到了切除信号。因此,大约 85%的复杂 DSBs 在重离子粒子轨迹中被切除。此外,大约 20-40%的 G1 细胞表现出切除信号。总之,我们的观察结果表明,DSB 末端的复杂性是调节 DSB 修复途径选择的关键因素,并极大地改变了向切除介导的连接的平衡。正如这里所展示的,对重离子辐射诱导的 DNA 损伤反应的研究为阐明调节 DNA 末端切除的机制提供了一个重要工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验